www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Algorithmus
Algorithmus < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Algorithmus: Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:00 Do 28.04.2011
Autor: Carlo

Aufgabe
Mit dem Gauß'schen-Algorithmus ist folgende Aufgabe zu lösen:

[mm] \pmat{ 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \\ 4 & 1 & 2 & 3 \\ 3 & 2 & 1 & 4 } \pmat{ x_1 \\ x_2 \\ x_3 \\ x_4 } [/mm] = [mm] \pmat{ 0 \\ -4 \\ 4 \\ 0 \\ 0 } [/mm]

Ich habe eliminiert und es kam folgendes zustande:

1   1   1     1    0
1   2   3     4    -4
0  -3   -6   -9    0
0    0   -4    4    -5
0    0    0    12    -9


Ich habe für [mm] x_1 [/mm] = -5, [mm] x_2= \bruch{5}{4}, x_3= \bruch{1}{2}, x_4= -\bruch{3}{4} [/mm]

Aber die Ergebnisse können nicht stimmen, als Probe habe ich die Lösungen in die 1. Zeile des Gleichungssystems eingesetzt und es kam nicht 0 raus. :S


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 22:17 Do 28.04.2011
Autor: MathePower

Hallo Carlo,

> Mit dem Gauß'schen-Algorithmus ist folgende Aufgabe zu
> lösen:
>  
> [mm]\pmat{ 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \\ 4 & 1 & 2 & 3 \\ 3 & 2 & 1 & 4 } \pmat{ x_1 \\ x_2 \\ x_3 \\ x_4 }[/mm]
> = [mm]\pmat{ 0 \\ -4 \\ 4 \\ 0 \\ 0 }[/mm]
>  Ich habe eliminiert und
> es kam folgendes zustande:
>  
> 1   1   1     1    0
>  1   2   3     4    -4
>  0  -3   -6   -9    0
>  0    0   -4    4    -5
>  0    0    0    12    -9
>  
>
> Ich habe für [mm]x_1[/mm] = -5, [mm]x_2= \bruch{5}{4}, x_3= \bruch{1}{2}, x_4= -\bruch{3}{4}[/mm]
>  
> Aber die Ergebnisse können nicht stimmen, als Probe habe
> ich die Lösungen in die 1. Zeile des Gleichungssystems
> eingesetzt und es kam nicht 0 raus. :S
>  


Dann poste Deine Zwischenschritte, wie Du zu  diesem Ergebnis kommst.


>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
Algorithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:25 Do 28.04.2011
Autor: Carlo

1     1     1     1     0
1     2     3     4     -4
4     3     2     1     4                  |-4
4     1     2     3     0                  |-4
3     2     1     4     0                  |-3



1     1     1     1     0
1     2     3     4     -4
0     -1   -2    -3    0                  | *3
0    -3    -2    -1    -4
0    -1    -2     1     -3                | *3



1     1     1     1      0
1     2     3     4      -4
0     -3   -6    -9     0
0     -3   -2    -1     -4                | 5. - 4.
0     -3   -6     3     -9                | 5. - 3.



1     1     1     1     0
1     2     3     4     -4
0     -3    -6   -9    0
0     0      -4   4    -5
0     0     0     12   -9  

Bezug
                        
Bezug
Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 22:37 Do 28.04.2011
Autor: MathePower

Hallo Carlo,

> 1     1     1     1     0
>  1     2     3     4     -4
>  4     3     2     1     4                  |-4
>  4     1     2     3     0                  |-4
>  3     2     1     4     0                  |-3
>  
>
>
> 1     1     1     1     0
>  1     2     3     4     -4
>  0     -1   -2    -3    0                  | *3
>  0    -3    -2    -1    -4
>  0    -1    -2     1     -3                | *3
>  


Hier müssen andere Zahlen stehen:

1     1     1     1     0
1     2     3     4     -4
0     -1   -2    -3    0
0    -3    -2    -1    -4
0    -1    -2     1     -3


>
>
> 1     1     1     1      0
>  1     2     3     4      -4
>  0     -3   -6    -9     0
>  0     -3   -2    -1     -4                | 5. - 4.
>  0     -3   -6     3     -9                | 5. - 3.
>  
>
>
> 1     1     1     1     0
>  1     2     3     4     -4
>  0     -3    -6   -9    0
>  0     0      -4   4    -5
>  0     0     0     12   -9    


Gruss
MathePower

Bezug
                                
Bezug
Algorithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:42 Do 28.04.2011
Autor: Carlo

Ich kann das jetzt nicht so wirklich nachvollziehen :S

Ich habe doch 4-4= 0 und 0-4=-4 und 0-3=-3 gerechnet, wieso ist das falsch ?

Bezug
                                        
Bezug
Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 22:55 Do 28.04.2011
Autor: MathePower

Hallo Carlo,

> Ich kann das jetzt nicht so wirklich nachvollziehen :S
>  
> Ich habe doch 4-4= 0 und 0-4=-4 und 0-3=-3 gerechnet, wieso
> ist das falsch ?


Wenn ich 3. Zeile minus 4 mal 1. Zeile rechne, steht
in der 3. Zeile, 5. Spalte eine von 0 verschiedene Zahl.


Gruss
MathePower


Bezug
                                                
Bezug
Algorithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:48 Do 28.04.2011
Autor: Carlo

Dankeschön für die Hilfe :)

Ich habs jetzt verbessert und komme auf

[mm] x_1= [/mm] 1 ; [mm] x_2= [/mm] 1 ; [mm] x_3= [/mm] -1 ; [mm] x_4= [/mm] -1

Bezug
                                                        
Bezug
Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 08:03 Fr 29.04.2011
Autor: Al-Chwarizmi


> [mm]x_1=[/mm] 1 ; [mm]x_2=[/mm] 1 ; [mm]x_3=[/mm] -1 ; [mm]x_4=[/mm] -1


[daumenhoch]  Diese Lösung passt.
  



Bezug
        
Bezug
Algorithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:44 Fr 29.04.2011
Autor: Carlo

Aufgabe
[mm] \pmat{ 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 } \pmat{ x_1 \\ x_2 \\ x_3 } [/mm] =
[mm] \pmat{ 0 \\ 3 \\ 6 } [/mm]


Ich habe noch eine Frage zu einer anderen Aufgabe.Undzwar habe ich diese obige Aufgabe soweit eliminiert, dass ich in der letzten Zeile nur noch Nullen stehen hatte.
Die Aufgabe müsste doch unendlich viele Lösungen haben. Aber wie müsste ich das mathematisch "sauber" formulieren ?


Also für $ [mm] x_3 [/mm] $ habe ich 0=0 raus.
$ [mm] x_2= [/mm] $ -1 und $ [mm] x_1=2 [/mm] $

Ich weiß jetzt nicht, wie weit das richtig ist :S

Bezug
                
Bezug
Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 08:03 Fr 29.04.2011
Autor: angela.h.b.



> [mm]\pmat{ 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 } \pmat{ x_1 \\ x_2 \\ x_3 }[/mm]
> =
>  [mm]\pmat{ 0 \\ 3 \\ 6 }[/mm]
>  
> Ich habe noch eine Frage zu einer anderen Aufgabe.Undzwar
> habe ich diese obige Aufgabe soweit eliminiert, dass ich in
> der letzten Zeile nur noch Nullen stehen hatte.

Hallo,

es wäre schön, wenn man von Deinen Rechnungen etwas sehen könnte, zumindest das Ende: die (reduzierte) Zeilenstufenform o.ä.

>  Die Aufgabe müsste doch unendlich viele Lösungen haben.
> Aber wie müsste ich das mathematisch "sauber" formulieren
> ?
>  
>
> Also für [mm]x_3[/mm] habe ich 0=0 raus.
>  [mm]x_2=[/mm] -1 und [mm]x_1=2[/mm]
>  
> Ich weiß jetzt nicht, wie weit das richtig ist :S  

Am Ende solltest Du sowas dastehen haben:

[mm] \pmat{1&0&-1&|&2\\0&1&2&|-1\\0&0&0&|&0} [/mm]

bzw.

[mm] x_1-x_3=2 [/mm] <==> [mm] x_1=2-x_3 [/mm]
[mm] x_2+2x_3=-1 [/mm] <==> [mm] x_2=-1-2x_3. [/mm]

Mit [mm] x_3=t [/mm] bekommst Du:

Alle Lösungen des Systems haben die Gestalt

[mm] \vektor{x_1\\x_2\\x_3}=\vektor{2-t\\-1-2t\\t}=\vektor{2\\-1\\0}+t*\vektor{-1\\-2\\1}, [/mm] qquad [mm] t\in \IR. [/mm]

Der Vektor [mm] \vektor{2\\-1\\0} [/mm] ist eine spezielle Lösung Deines inhomogenen LGS, der Vektor [mm] \vektor{-1\\-2\\1} [/mm] ist eine Basis des zugehörigen homogenen Systems.

Gruß v. Angela




Bezug
                        
Bezug
Algorithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:56 Fr 29.04.2011
Autor: Carlo

soweit habe ich es auch ausgerechnet, die Zeile ist bei mir richtig, nur was ichnicht verstehe ist: [mm] x_3 [/mm] ist doch gleich 0 und wenn ich das denn in die 2. Zeile einsetze komme ich auf [mm] x_2= [/mm] -1, woher weiß  man denn, dass [mm] x_3=t [/mm] ist ?

Bezug
                                
Bezug
Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 12:02 Fr 29.04.2011
Autor: abakus


> soweit habe ich es auch ausgerechnet, die Zeile ist bei mir
> richtig, nur was ichnicht verstehe ist: [mm]x_3[/mm] ist doch gleich  0

Wieso denn?
Aus [mm] 0*x_3=0 [/mm] folgt nicht zwangsläufig [mm] x_3 [/mm] = 0.

Jede beliebige andere Zahl erfüllt diese Gleichung AUCH.
Und dieser beliebigen Lösung wurde der Name "t" verpasst.
Gruß Abakus

> und wenn ich das denn in die 2. Zeile einsetze komme ich
> auf [mm]x_2=[/mm] -1, woher weiß  man denn, dass [mm]x_3=t[/mm] ist ?


Bezug
                                        
Bezug
Algorithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:07 Fr 29.04.2011
Autor: Carlo

Ja, es folgt nicht unbedingt [mm] x_3=0 [/mm] , aber [mm] 0*x_3=0 [/mm] und dabei kommt denn 0=0 raus :S Ist es denn immer so, wenn man 0=0 raus hat, dass [mm] x_3 [/mm] eine beliebige Zahl annehmen kann ?

Bezug
                                                
Bezug
Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 Fr 29.04.2011
Autor: MathePower

Hallo Carlo,

> Ja, es folgt nicht unbedingt [mm]x_3=0[/mm] , aber [mm]0*x_3=0[/mm] und dabei
> kommt denn 0=0 raus :S Ist es denn immer so, wenn man 0=0
> raus hat, dass [mm]x_3[/mm] eine beliebige Zahl annehmen kann ?


Aus der Gleichung

[mm]0*x_{3}=0[/mm]

geht hervor, daß für [mm]x_{3}[/mm] jede beliebige Zahl eingesetzt werden kann.


Gruss
MathePower

Bezug
                        
Bezug
Algorithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:36 Fr 29.04.2011
Autor: Carlo

Für [mm] x_1 [/mm] kommt doch 2 + t raus und nicht 2 -t oder ? :S

Bezug
                                
Bezug
Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 18:46 Fr 29.04.2011
Autor: MathePower

Hallo Carlo,

> Für [mm]x_1[/mm] kommt doch 2 + t raus und nicht 2 -t oder ? :S


[mm]x_{1}=2+t[/mm] ist richtig.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de