www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Alle Ableitungen k=1,...,n
Alle Ableitungen k=1,...,n < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Alle Ableitungen k=1,...,n: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:55 Di 19.06.2007
Autor: barsch

Hi,

ich soll alle Ableitungen [mm] f^{k} [/mm] von k=1,..,n bestimmen.

[mm] f(x)=x^{n+1} [/mm]

[mm] f'(x)=(n+1)*x^{n+1-1} [/mm]

[mm] f''(x)=(n+1)*(n+1-1)*x^{n+1-1-1} [/mm]

[mm] f'''(x)=(n+1)*(n+1-1)*(n+1-1-1)*x^{n+1-1-1-1} [/mm]

Bei Taylor bin ich da wohl an der ganz falschen Adresse?
Ich muss das also irgendwie über ein Produkt [mm] \produkt_{k=1}^{n} [/mm] berechnen, oder? Aber ich komme einfach nicht drauf.

MfG

barsch

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Alle Ableitungen k=1,...,n: Antwort
Status: (Antwort) fertig Status 
Datum: 00:10 Mi 20.06.2007
Autor: Harris

wie du die ersten Ableitungen schon richtig hingeschrieben hast, ist es eigentlich schon ok!

nur dir ist wohl noch nicht aufgefallen, dass die k-te Ableitung von [mm] x^{n+1} [/mm] = [mm] \bruch{(n+1)!}{k!} [/mm] * [mm] x^{n+1-k} [/mm] ist

Bezug
                
Bezug
Alle Ableitungen k=1,...,n: k! im Nenner?
Status: (Frage) beantwortet Status 
Datum: 00:14 Mi 20.06.2007
Autor: barsch

Hi,

ist mir nicht aufgefallen, danke.

Aber das k! im Nenner verstehe ich nicht?!


> nur dir ist wohl noch nicht aufgefallen, dass die k-te
> Ableitung von [mm]x^{n+1}[/mm] = [mm]\bruch{(n+1)!}{k!}[/mm] * [mm]x^{n+1-k}[/mm] ist

MfG

barsch

Bezug
                        
Bezug
Alle Ableitungen k=1,...,n: Antwort
Status: (Antwort) fertig Status 
Datum: 00:29 Mi 20.06.2007
Autor: Harris

Am besten nimmst du [mm] x^m, [/mm] mit m = n+1, da isses leichter zu sehen

also... die 4. Ableitung von [mm] x^m [/mm] ist m * (m-1) * (m-2) * (m-3) * [mm] x^{m-k} [/mm] okay?

das ist ja das gleiche wie (wenn absofort k und nicht 4 steht:

[mm] \bruch{m * (m-1) * (m-2) * ... * (m-k+1) * (m-k) * ... * 2 * 1}{(m-k) * ... * 2 * 1} [/mm] * [mm] x^{m-k}, [/mm] weil du ja mit (m-k) * ... * 2 * 1 nur erweitet hast

und das ist aber [mm] \bruch{m!}{(m-k)!} [/mm] * [mm] x^{m-k} [/mm]

und da du m=n+1 am Anfang hast, steht dann da
[mm] \bruch{(n+1)!}{(n-k+1)!} [/mm] * [mm] x^{n-k+1} [/mm] = [mm] f^{(k)}(x) [/mm]

und hier habe ich bemerkt, dass ich nen fehler reingetippt habe...  muss natürlich (n-k)! statt k! sein! sorry ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de