www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Alle Überlagerungen bestimmen
Alle Überlagerungen bestimmen < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Alle Überlagerungen bestimmen: Ansatz gesucht
Status: (Frage) beantwortet Status 
Datum: 17:05 Sa 19.11.2011
Autor: skoopa

Aufgabe
Bestimmen Sie alle Überlagerungen von
i) der reellen projektiven Ebene [mm] $\IR P^2$ [/mm]
ii) dem 2-dimensionalen Torus

Hallo!
Also ich hab irgendwie Probleme einen Ansatz für die obige Aufgabe zu finden.
Ich weiß, dass die 2-Sphäre eine 2-blättrige Überlagerung der projektiven Ebene ist und die reelle Ebene eine Überlagerung des 2-Torus.
Aber irgendwie weiß ich so gar nicht, wie ich auf alle Überlagerungen kommen soll.?
Oder wie ich zeigen soll, dass es sich um alle Überlagerungen handelt.
Meine einzige, magere Idee ist, dass vielleicht irgendwie alle Überlagerungen dieser Räume zu den Überlagerungen, die ich oben angegeben hab äquivalent  sind, oder man die ineinander überführen kann. Hab allerdings keinen Schimmer wie...
Vielleicht hat mir ja jemand einen Ansatz. Wäre sehr froh darum!
Danke im Voraus!
Beste Grüße!
skoopa

        
Bezug
Alle Überlagerungen bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:37 Mo 21.11.2011
Autor: Berieux

Hi!

> Bestimmen Sie alle Überlagerungen von
>  i) der reellen projektiven Ebene [mm]\IR P^2[/mm]
>  ii) dem
> 2-dimensionalen Torus
>  Hallo!
>  Also ich hab irgendwie Probleme einen Ansatz für die
> obige Aufgabe zu finden.
>  Ich weiß, dass die 2-Sphäre eine 2-blättrige
> Überlagerung der projektiven Ebene ist und die reelle
> Ebene eine Überlagerung des 2-Torus.
>  Aber irgendwie weiß ich so gar nicht, wie ich auf alle
> Überlagerungen kommen soll.?
>  Oder wie ich zeigen soll, dass es sich um alle
> Überlagerungen handelt.
>  Meine einzige, magere Idee ist, dass vielleicht irgendwie
> alle Überlagerungen dieser Räume zu den Überlagerungen,
> die ich oben angegeben hab äquivalent  sind, oder man die
> ineinander überführen kann. Hab allerdings keinen
> Schimmer wie...
>  Vielleicht hat mir ja jemand einen Ansatz. Wäre sehr froh
> darum!

Weißt du denn was die Fundamentalgruppe von [mm] RP^2 [/mm] bzw. [mm] T^2 [/mm] ist? In welchem Zusammenhang stehen Fundamentalgruppe und Überlagerungen eines Raumes?

Beste Grüße,
Berieux

>  Danke im Voraus!
>  Beste Grüße!
>  skoopa


Bezug
                
Bezug
Alle Überlagerungen bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:05 Mi 23.11.2011
Autor: todo12

Hallo,

ich sitze vor der gleichen Aufgabe. Ich weiß daß  
[mm] \pi_1 [/mm] ( $ [mm] RP^2 [/mm] $ ) = [mm] \IZ/2\IZ [/mm] und  [mm] \pi_1 [/mm] ( $ [mm] T^2 [/mm] $ ) = [mm] \IZ \times \IZ. [/mm] Leider kann ich mit deinem zweiten Hinweis nicht so recht viel angefangen. Ich weiß wie einzelne Überlagerungen mit der Fundamentalgruppe zusammen hängen aber ich kann leider nichts finden das eine Aussage macht über die Anzahl der Überlagerungen oder ähnliches. Kannst du mir einen Tipp geben was ich verwenden soll?

Bezug
                        
Bezug
Alle Überlagerungen bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:11 Do 24.11.2011
Autor: Berieux

Hallo!

> Hallo,
>  
> ich sitze vor der gleichen Aufgabe. Ich weiß daß  
> [mm]\pi_1[/mm] ( [mm]RP^2[/mm] ) = [mm]\IZ/2\IZ[/mm] und  [mm]\pi_1[/mm] ( [mm]T^2[/mm] ) = [mm]\IZ \times \IZ.[/mm]
> Leider kann ich mit deinem zweiten Hinweis nicht so recht
> viel angefangen. Ich weiß wie einzelne Überlagerungen mit
> der Fundamentalgruppe zusammen hängen aber ich kann leider
> nichts finden das eine Aussage macht über die Anzahl der
> Überlagerungen oder ähnliches. Kannst du mir einen Tipp
> geben was ich verwenden soll?

Die Fundamentalgruppe operiert durch Decktransformationen auf der universellen Überlagerung (im Fall von [mm] RP^2 [/mm] ist das [mm] S^2, [/mm] und im Fall von [mm] T^2, R^2). [/mm]
Darum hat man eine Bijektion zwischen den Überlagerungen, und den Untergruppen der Fundamentalgruppe. Zwei Überlagerungen sind genau dann äquivalent, wenn die jeweiligen Untergruppen zueinander konjugiert sind. Es geht also darum, die Untergruppen bis auf Konjugation zu bestimmen.


Beste Grüße,
Berieux

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de