www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Allg. zu globalen Extrema
Allg. zu globalen Extrema < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Allg. zu globalen Extrema: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:07 Fr 05.07.2013
Autor: Herbart

Hallo,

ich habe eine Frage zu globalen Extrema bei Fkt. [mm]f:\IR^n\to\IR[/mm].
Ich habe eine Fkt. mehrerer Variablen, die allerdings als Definitionsbereich eine abgeschlossene Teilmenge des [mm] \IR^n [/mm] hat, z.B. eine Kugel mit Rand. Wenn ich die Extremstellen mit den Nullstellen des Gradienten [mm]\nabla f[/mm] herausgefunden habe (dann Hesse-Matrix usw.) und schließlich die Kandidaten für Randextrema identifiziert habe (z.B. mittels Parametrisierung o.ä.), was muss ich dann tun um z.zg., dass ein bestimmtes Randextremum globale Max./Min.-stelle ist?
Reicht es die Werte [mm]f(Randextremum)[/mm] mit [mm]f(Extremstellen)[/mm] zu vergleichen und festzustellen, dass im Falle eines glob. Max. [mm]f(Extremstellen) Oder muss ich wirklich zeigen, dass [mm]f(x)
MfG Herbart

        
Bezug
Allg. zu globalen Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 10:18 Fr 05.07.2013
Autor: Thomas_Aut


> Hallo,
>  
> ich habe eine Frage zu globalen Extrema bei Fkt.
> [mm]f:\IR^n\to\IR[/mm].
> Ich habe eine Fkt. mehrerer Variablen, die allerdings als
> Definitionsbereich eine abgeschlossene Teilmenge des [mm]\IR^n[/mm]
> hat, z.B. eine Kugel mit Rand. Wenn ich die Extremstellen
> mit den Nullstellen des Gradienten [mm]\nabla f[/mm] herausgefunden
> habe (dann Hesse-Matrix usw.) und schließlich die
> Kandidaten für Randextrema identifiziert habe (z.B.
> mittels Parametrisierung o.ä.), was muss ich dann tun um
> z.zg., dass ein bestimmtes Randextremum globale
> Max./Min.-stelle ist?
>  Reicht es die Werte [mm]f(Randextremum)[/mm] mit [mm]f(Extremstellen)[/mm]
> zu vergleichen und festzustellen, dass im Falle eines glob.
> Max. [mm]f(Extremstellen)
> Oder muss ich wirklich zeigen, dass
> [mm]f(x)
>  
> MfG Herbart

Du willst zeigen dass du am Rand ein globales Max hast?

Nun ja du ermittels die Extrema auf der offenen Menge durch 0 setzen der partiellen Ableitungen - dann betrachtest du was am Rand passiert.
Sollte der Funktionswert des Randpunktes > der Maximumsstellen der Funktion auf der offenen Menge sein dann hast du deine Antwort doch schon oder?


[mm]f(x)
Ein lokales Maximum bedeutet doch: Dass der Wert der Funktion in einer Umgebung keine größeren Wert annimt. Wenn du also alle lokalen Extrema auf der offenen Menge bestimmst dann impliziert das, dass keine "größeren" Werte als an den Extremstellen angenommen werden können. Insofern musst du natürlich andere Punkte nicht mehr beachten - also du kannst dir: [mm]f(x)
Vergleich der Extrema mit dem Rand genügt.

Gruß

Thomas


Bezug
                
Bezug
Allg. zu globalen Extrema: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:40 Fr 05.07.2013
Autor: Herbart

Vielen Dank für deine Erklärung. Besonders
> Ein lokales Maximum bedeutet doch: Dass der Wert der
> Funktion in einer Umgebung keine größeren Wert annimt.
> Wenn du also alle lokalen Extrema auf der offenen Menge
> bestimmst dann impliziert das, dass keine "größeren"
> Werte als an den Extremstellen angenommen werden können.
> Insofern musst du natürlich andere Punkte nicht mehr
> beachten - also du kannst dir: [mm]f(x)
> sparen.

war sehr hilfreich. Danke.

MfG Herbart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de