www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Allgemeine Lage / VANDERMONDE
Allgemeine Lage / VANDERMONDE < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Allgemeine Lage / VANDERMONDE: Tipp, Korrektur
Status: (Frage) beantwortet Status 
Datum: 17:05 So 14.06.2009
Autor: klaeuschen

Aufgabe
a) (3P.) Prüfen Sie, ob die Punkte (0,1), (1,2), (1,1) und (1,3) des [mm] \IR^{2} [/mm] in allgemeiner Lage sind.
b) (4P.) Prüfen Sie, ob die Punkte (0,1,0), (0,1,2), (1,2,1), (1,3,1) und (1,1,0) des [mm] \IR^{3} [/mm] in allgemeiner Lage sind.

Definition Ein System [mm] P_{0}, P_{1},...,P_{N} [/mm] von Elementen aus dem Vektorraum V heißt in allgemeiner Lage, sofern jedes Teilsystem mit höchstens n+1 Elementen affin unabhängig ist. (n=dimV)

Hallo!

Ich habe zu beiden (Teil-) Aufgaben einen Lösungsansatz. Jedoch vermute ich, dass dieser falsch ist, da es ja 3 bzw. 4 Punkte auf die Lösung geben soll. Vielleicht könnt ihr mir ja sagen mein Fehler liegt, falls es einen gibt. Vielen Dank.

zu a) Die Dimension des [mm] \IR^{2} [/mm] ist 2. Also muss jedes Teilsystem von (2+1) Punkten affin unabhängig sein. Ich berechne die VANDERMONDE-Determinate der letzten drei Punkte: [mm] \vmat{ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 2^2 & 1^2 & 3^2 } [/mm] = (1-1)*(1-1)*(1-1) = 0. [mm] \Rightarrow [/mm] Dieses Teilsystem ist affin abhängig und somit befinden sich alle vier Punkte nicht in allgemeiner Lage.

zu b) Die Dimension des [mm] \IR^{3} [/mm] ist 3. Also muss jedes Teilsystem von (3+1) Punkten affin unabhängig sein. Ich berechne die VANDERMONDE-Determinate der ersten vier Punkte: [mm] \vmat{ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1^2 & 1^2 & 2^2 & 3^2 \\ 0^3 & 2^3 & 1^3 & 1^3} [/mm] = (0-0)*(1-0)*(1-0)*(1-0)*(1-0)*(1-1)=0 [mm] \Rightarrow [/mm] Dieses Teilsystem ist affin abhängig und somit befinden sich alle fünf Punkte nicht in allgemeiner Lage.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Allgemeine Lage / VANDERMONDE: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:55 So 14.06.2009
Autor: klaeuschen

Kann mir denn keiner helfen?

Bezug
        
Bezug
Allgemeine Lage / VANDERMONDE: Antwort
Status: (Antwort) fertig Status 
Datum: 23:54 So 14.06.2009
Autor: felixf

Hallo!

> a) (3P.) Prüfen Sie, ob die Punkte (0,1), (1,2), (1,1) und
> (1,3) des [mm]\IR^{2}[/mm] in allgemeiner Lage sind.
>  b) (4P.) Prüfen Sie, ob die Punkte (0,1,0), (0,1,2),
> (1,2,1), (1,3,1) und (1,1,0) des [mm]\IR^{3}[/mm] in allgemeiner
> Lage sind.
>  
> Definition Ein System [mm]P_{0}, P_{1},...,P_{N}[/mm] von Elementen
> aus dem Vektorraum V heißt in allgemeiner Lage, sofern
> jedes Teilsystem mit höchstens n+1 Elementen affin
> unabhängig ist. (n=dimV)
>  
> Hallo!
>  
> Ich habe zu beiden (Teil-) Aufgaben einen Lösungsansatz.
> Jedoch vermute ich, dass dieser falsch ist, da es ja 3 bzw.
> 4 Punkte auf die Lösung geben soll. Vielleicht könnt ihr
> mir ja sagen mein Fehler liegt, falls es einen gibt. Vielen
> Dank.
>  
> zu a) Die Dimension des [mm]\IR^{2}[/mm] ist 2. Also muss jedes
> Teilsystem von (2+1) Punkten affin unabhängig sein. Ich
> berechne die VANDERMONDE-Determinate der letzten drei
> Punkte: [mm]\vmat{ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 2^2 & 1^2 & 3^2 }[/mm]
> = (1-1)*(1-1)*(1-1) = 0. [mm]\Rightarrow[/mm] Dieses Teilsystem ist
> affin abhängig und somit befinden sich alle vier Punkte
> nicht in allgemeiner Lage.

Was genau tust du da?! Also was machst du da mit einer Vandermonde-Determinante?! Du musst doh einfach [mm] $\det\pmat{ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 2 & 1 & 3 }$ [/mm] ausrechnen (also jeweils eine 1 oben dazu, aber keine Potenzen nehmen!) und gucken ob das 0 ist. (Das ist hier 0 wegen zwei gleichen Zeilen.) Deine Rechnung mit $(1 - 1) * (1 - 1) * (1 - 1)$ macht hier keinen Sinn, da das keine Vandermonde-Matrix ist.

Bei b) dann genau das gleiche.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de