www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Allgemeine Lösung bestimmen
Allgemeine Lösung bestimmen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Allgemeine Lösung bestimmen: Rückfrage, Idee, Tipp, Hilfe
Status: (Frage) beantwortet Status 
Datum: 12:21 Mi 27.12.2017
Autor: Dom_89

Aufgabe
Bestimme für x>0 die allgemeine Lösung der Differentialgleichung

[mm] y`(x)-\bruch{y(x)}{x} [/mm] = [mm] \bruch{x}{(x+1)^2} [/mm]

Hallo,

ich stehe bei dieser Aufgabe eine wenig auf dem Schlauch unf hoffe, dass ihr mir helfen könnt.

Die Lösung soll sein: y(x) = Cx - [mm] \bruch{x}{x+1} [/mm]

Nun bin ich mir schon nicht sicher, welches Lösungsverfahren hier am besten wäre!?

Könnt ihr mir das einen Tipp geben ?

Danke

        
Bezug
Allgemeine Lösung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:39 Mi 27.12.2017
Autor: Diophant

Hallo,

> Bestimme für x>0 die allgemeine Lösung der
> Differentialgleichung

>

> [mm]y'(x)-\bruch{y(x)}{x}[/mm] = [mm]\bruch{x}{(x+1)^2}[/mm]
> Hallo,

>

> ich stehe bei dieser Aufgabe eine wenig auf dem Schlauch
> unf hoffe, dass ihr mir helfen könnt.

>

> Die Lösung soll sein: y(x) = Cx - [mm]\bruch{x}{x+1}[/mm]

>

> Nun bin ich mir schon nicht sicher, welches
> Lösungsverfahren hier am besten wäre!?

Es funktioniert per Variation der Konstanten. Hilft dir das schon weiter oder benötigst du weitere Tipps?


Gruß, Diophant

Bezug
                
Bezug
Allgemeine Lösung bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:22 Do 28.12.2017
Autor: Dom_89

Hallo,

vielen Dank für die schnelle Antwort!

Hier einmal mein Ansatz

Zunächst habe ich den homogenen Teil bestimmt:

y'(x) - [mm] \bruch{y(x)}{x} [/mm] = [mm] \bruch{x}{(x+1)^2} [/mm]

y'(x) - [mm] \bruch{y(x)}{x} [/mm] = 0

[mm] \bruch{dy}{dx}= \bruch{y(x)}{x} [/mm]

[mm] \bruch{1}{y}dy [/mm] = [mm] \bruch{1}{x}dx [/mm]

[mm] \integral{\bruch{1}{y}dy} [/mm] = [mm] \integral{\bruch{1}{x}dx} [/mm]

ln|y| = ln|x| + C

|y| = [mm] e^{ln|x|+c } [/mm]

y = Cx

Die Variation ergibt dann:

y= C(x)x

Nun habe ich y abgeleitet und folgendes raus:

y'= C'(x)x+C(x)

Das ganz dann in meine ursprüngliche Gleichung eingesetzt:

[mm] C'(x)x+C(x)-\bruch{C(x)*x}{x} [/mm] = [mm] \bruch{x}{(x+1)^2} [/mm]

C'(x)x = [mm] \bruch{x}{(x+1)^2} [/mm]

C'(x) = [mm] \bruch{x^2}{(x+1)^2} [/mm]

Nun muss ich das ganze ja noch integrieren um C(x) zu erhalten und das dann wieder einsetzten.

Ist meine Lösung bis hierher denn richtig?

Vielen Dank

Bezug
                        
Bezug
Allgemeine Lösung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:39 Do 28.12.2017
Autor: Diophant

Hallo,

> vielen Dank für die schnelle Antwort!

>

> Hier einmal mein Ansatz

>

> Zunächst habe ich den homogenen Teil bestimmt:

>

> y'(x) - [mm]\bruch{y(x)}{x}[/mm] = [mm]\bruch{x}{(x+1)^2}[/mm]

>

> y'(x) - [mm]\bruch{y(x)}{x}[/mm] = 0

>

> [mm]\bruch{dy}{dx}= \bruch{y(x)}{x}[/mm]

>

> [mm]\bruch{1}{y}dy[/mm] = [mm]\bruch{1}{x}dx[/mm]

>

> [mm]\integral{\bruch{1}{y}dy}[/mm] = [mm]\integral{\bruch{1}{x}dx}[/mm]

>

> ln|y| = ln|x| + C

>

> |y| = [mm]e^{ln|x|+c }[/mm]

>

> y = Cx

>

> Die Variation ergibt dann:

>

> y= C(x)x

>

> Nun habe ich y abgeleitet und folgendes raus:

>

> y'= C'(x)x+C(x)

>

> Das ganz dann in meine ursprüngliche Gleichung
> eingesetzt:

>

> [mm]C'(x)x+C(x)-\bruch{C(x)*x}{x}[/mm] = [mm]\bruch{x}{(x+1)^2}[/mm]

>

> C'(x)x = [mm]\bruch{x}{(x+1)^2}[/mm]

>

> C'(x) = [mm]\bruch{x^2}{(x+1)^2}[/mm]

>

> Nun muss ich das ganze ja noch integrieren um C(x) zu
> erhalten und das dann wieder einsetzten.

>

> Ist meine Lösung bis hierher denn richtig?

>

Es passt alles, bis auf den letzten Schritt. Du dividierst die Gleichung doch durch x, um selbiges wegzubekommen. Also muss es am Ende heißen:

[mm]C'(x)= \frac{1}{(x+1)^2}[/mm]


Gruß, Diophant

Bezug
                                
Bezug
Allgemeine Lösung bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:58 Do 28.12.2017
Autor: Dom_89

Hallo Diophant,

nach Korrektur bin ich ohne weitere Probleme dann auch auf die Lösung gekommen!

Besten Dank für die Hilfe!

Gruß

Bezug
        
Bezug
Allgemeine Lösung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:28 Mi 27.12.2017
Autor: fred97

Ich möchte mich etwas ausführlicher äußern als Diophant.

1.  Es handelt sich um eine inhomogene lineare DGL.  1.Ordnung.

2. Bestimme die allgemeine Lösung der zugehörigen homogenen DGL

3. Bestimme eine  spezielle  Lösung der inhomogenen Dgl mit  Variation der Konstanten

Wie lautet dann  die allgemeine Lösung?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 4h 09m 4. HJKweseleit
GraphTheo/Zusammenhängender Zufallsgraph
Status vor 8h 37m 2. Siebenstein
UElek/Leitungsumrechnung
Status vor 9h 18m 6. HJKweseleit
ULinAAb/Kern und Bild bestimmen
Status vor 9h 43m 3. Ataaga
SGeradEbene/Abstand eines Punktes
Status vor 13h 50m 5. Dom_89
DiffGlGew/Lösung der DGL
^ Seitenanfang ^
www.vorhilfe.de