www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Allgemeines Prinzip
Allgemeines Prinzip < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Allgemeines Prinzip: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:57 Mi 02.08.2006
Autor: Peter_Pan

Hallo Zusammen.

gegeben sei:
- Matrix C mit 2 Zeilen und 2 Spalten
- Matrix D mit 2 Zeilen und 2 Spalten
- C,D sind beide jeweils  [mm] \not= [/mm] 0
- C*D soll stets = 0 sein


In welcher Beziehung stehen C und D, wenn die oben gegebenen Bedingungen gelten?
Gibt es ein allgemeines Prinzip mit dem man schnell etliche beliebige Matrizen C und D findet, die multipliziert 0 ergeben?  

Ein Bsp. das mir in den Sinn kam:
C=  [mm] \pmat{ 1 & 0 \\ 2 & 0 } [/mm]
D=  [mm] \pmat{ 0 & 0 \\ 1 & 2 } [/mm]

Danke Euch!

Arrivederci, Peter. =-)

        
Bezug
Allgemeines Prinzip: Antwort
Status: (Antwort) fertig Status 
Datum: 17:37 Mi 02.08.2006
Autor: Bastiane

Hallo!

> gegeben sei:
> - Matrix C mit 2 Zeilen und 2 Spalten
>  - Matrix D mit 2 Zeilen und 2 Spalten
>  - C,D sind beide jeweils  [mm]\not=[/mm] 0
>  - C*D soll stets = 0 sein
>  
>
> In welcher Beziehung stehen C und D, wenn die oben
> gegebenen Bedingungen gelten?
>  Gibt es ein allgemeines Prinzip mit dem man schnell
> etliche beliebige Matrizen C und D findet, die
> multipliziert 0 ergeben?  
>
> Ein Bsp. das mir in den Sinn kam:
>  C=  [mm]\pmat{ 1 & 0 \\ 2 & 0 }[/mm]
>  D=  [mm]\pmat{ 0 & 0 \\ 1 & 2 }[/mm]

Ich würde das einfach so aufschreiben:

[mm] \pmat{a&b\\c&d}*\pmat{e&f\\g&h}=\pmat{0&0\\0&0} [/mm]

Dann muss gelten:

ae+bg=0
ce+dg=0
af+bh=0
cf+dh=0

Und dann kannst du gewisse Abhängigkeiten angeben.

Viele Grüße
Bastiane
[cap]


Bezug
                
Bezug
Allgemeines Prinzip: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:55 Mi 02.08.2006
Autor: felixf

Hallo!

> > gegeben sei:
> > - Matrix C mit 2 Zeilen und 2 Spalten
>  >  - Matrix D mit 2 Zeilen und 2 Spalten
>  >  - C,D sind beide jeweils  [mm]\not=[/mm] 0
>  >  - C*D soll stets = 0 sein

Das soll alles ueber einem Koerper stattfinden, oder?

> > In welcher Beziehung stehen C und D, wenn die oben
> > gegebenen Bedingungen gelten?
>  >  Gibt es ein allgemeines Prinzip mit dem man schnell
> > etliche beliebige Matrizen C und D findet, die
> > multipliziert 0 ergeben?  
> >
> > Ein Bsp. das mir in den Sinn kam:
>  >  C=  [mm]\pmat{ 1 & 0 \\ 2 & 0 }[/mm]
>  >  D=  [mm]\pmat{ 0 & 0 \\ 1 & 2 }[/mm]
>  
> Ich würde das einfach so aufschreiben:
>  
> [mm]\pmat{a&b\\c&d}*\pmat{e&f\\g&h}=\pmat{0&0\\0&0}[/mm]
>  
> Dann muss gelten:
>  
> ae+bg=0
>  ce+dg=0
>  af+bh=0
>  cf+dh=0
>  
> Und dann kannst du gewisse Abhängigkeiten angeben.

Hier kann man noch mehr aussagen:
- Fixiert man $a, b, c, d$ so, dass $a d - b c [mm] \neq [/mm] 0$ ist, so hat dieses Gleichungssystem keine Loesung (dann ist naemlich die erste Matrix invertierbar).
- Ist dagegen $a d - b c = 0$, so gibt es mindestens eine nicht-triviale Loesung fuer $e, f, g, h$. Je nach Grundkoerper sogar viele (fuer [mm] $\IR$ [/mm] z.B. unendlich viele).
- Ist $a d - b c = 0$, so sind die moeglichen Spalten der zweiten Matrix gerade alle Elemente aus dem Kern der ersten Matrix (der wegen der Bedingung $a d - b c = 0$ nicht-trivial ist).

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de