www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Alternierend-harmonische Reihe
Alternierend-harmonische Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Alternierend-harmonische Reihe: Umordnung
Status: (Frage) beantwortet Status 
Datum: 13:17 So 22.11.2009
Autor: Ferolei

Aufgabe
Die alternierende harmonische Reihe [mm] (\summe_{k=1}^{n}\bruch{(-1)^k}{k})_n\in\IN [/mm] ist konvergent, aber nicht absolut konvergent.
Geben Sie eine Konstruktionsvorschrift einer Umordnung der alternierenden harmonischen Reihe an, so dass diese divergiert.

Hallo, ich habe zu obiger Aufgabe folgende Überlegungen bisher gemacht.
Habe in einem Buch bisher eine Umordnung zur alternierenden harmonischen Reihe gesehen, die aber [mm] (\summe_{k=1}^{n}\bruch{(-1)^{k-1}}{k})_n\in\IN [/mm] ist, daher sind alle Vorzeichen ja genau andersrum.

Ich bündel immer 4 negative Glieder zusammen und addiere dann ein positven:

Also: [mm] ((-1-\bruch{1}{3}-\bruch{1}{5}-\bruch{1}{7})+\bruch{1}{2}) [/mm]
[mm] +((-\bruch{1}{9}-\bruch{1}{11}-\bruch{1}{13}-\bruch{1}{15})+\bruch{1}{4})+... [/mm]

Verstehe ich das richtig, dass die Idee dahinter ist, dass die negativen Partialsummen (die nennt man doch so?) immer kleiner sein werden, als das einzige postive Glied ?

Nur dann stellt sich mir die Frage, wie man das allgemein formuliert mit Summenzeichen und so.

Liege ich hier total falsch oder ist das der richtige Ansatz?

lG, Ferolei

        
Bezug
Alternierend-harmonische Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:51 So 22.11.2009
Autor: Teufel

Hi!

Ich würde es eher so machen:
Du addierst solange positive Summanden auf, dass ihre Summe 1 übersteigt. Dann addierst du den ersten negativen Summanden dazu. Dann addierst du solange positive Summanden dazu, dass du die 2 überschreitest und addierst dann den 2. negativen Summanden u.s.w.

Damit schaffst du es, deine Summe gegen [mm] \infty [/mm] gehen zu lassen.

Da du nur eine Konstruktionsvorschrift angeben sollst, reicht das auch so, du musst da nicht mit geschlossenen Summenformeln arbeiten.

[anon] Teufel

Bezug
                
Bezug
Alternierend-harmonische Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:07 Mo 23.11.2009
Autor: Ferolei

Achso, das reicht als Konstruktionsvorschrift...gut !

Vielen Dank, dann ist es ja kein Problem !




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de