www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Amplitude
Amplitude < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Amplitude: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:15 So 23.01.2011
Autor: Kuriger

Hallo

Ich habe hier vier Fragen zur Schwingung, welche sich um die Amplitudenabhängigkeit drehen.
Es sind Behauptungen aufgestellt, die entweder falsch oder korrekt sind.
a) Die Eigenfrequenz eines Schwerependels ist amplitudenabhängig.
Die Kreisfrequenz des physikalischen Pendels ist:
ω = [mm] \wurzel{\bruch{g}{*l}} [/mm]
*l = reduzierte Pendellänge
*l = [mm] \bruch{J_A}{m*a} [/mm]


In dieser Formel kann ich ja nirgend eine Amplitudenabhängigkeit ausmachen. Dennoch wird diese Aussage als richtig  angesehen. Kann mir das jemand erklären?

Wenn ich hier jedoch die Differentialgleichung anschaue
[mm] J*\phi'' [/mm] = [mm] -g*sin(\phi)*l [/mm]

[mm] sin(\phi) [/mm] = [mm] \phi [/mm]

[mm] J*\phi'' [/mm] = [mm] -g*\phi*l [/mm]
[mm] J*\phi'' [/mm] + [mm] g*\phi*l [/mm]

Dies legt dann dorch den Verdacht nahe, dass eine Amplitudenabhängigkeit vorhanden ist? Denn wenn die Amplitude grösser wird, wird auch [mm] \phi [/mm] grösser. Aber mir ist es leider noch ein Rätsel, wie wo was



b) Die Eigenfrequenz eines Drehpendels ist amplitudenabhängig.
ω = [mm] \wurzel{\bruch{c}{J}} [/mm]
Gemäss Lösung ist dies flasch Doch weshalb?

c) Die Schwingungfrequenz eines geschwindigkeitsproportional gedämpften Drehpendels hängt vom Dämpfungsgrad ab
ω_d = [mm] ω_0*\wurzel{1 -D^2} [/mm]
Also hier kommt das Dämpfungsgrad in der Formel vor, also ist die Frequenz vom Dämpfungsgrad abhängig.

d) Die Schwingungsfrequenz eines geschwindigkeitsproportional gedämpften Feder-masse Schwingers ist amplitudenabhängig.

Leider fehlt mir hier das verständnis

Danke, Gruss Kuriger

        
Bezug
Amplitude: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 So 23.01.2011
Autor: Event_Horizon

Hallo Kuriger!

Eigentlich beschäftigst du dich schon recht lange mit Schwingungen, da müßtest du diese Fragen schon beantworten können.


>  a) Die Eigenfrequenz eines Schwerependels ist
> amplitudenabhängig.
>  Die Kreisfrequenz des physikalischen Pendels ist:
>  ω = [mm]\wurzel{\bruch{g}{*l}}[/mm]
>  *l = reduzierte Pendellänge
>  *l = [mm]\bruch{J_A}{m*a}[/mm]
>  
>
> In dieser Formel kann ich ja nirgend eine
> Amplitudenabhängigkeit
ausmachen. Dennoch wird diese

> Aussage als richtig  angesehen. Kann mir das jemand
> erklären?

Naja, aber das ist doch kein Widerspruch, sondern exakt die Begründung!





>  
> Wenn ich hier jedoch die Differentialgleichung anschaue
>  [mm]J*\phi''[/mm] = [mm]-g*sin(\phi)*l[/mm]
>  
> [mm]sin(\phi)[/mm] = [mm]\phi[/mm]
>  
> [mm]J*\phi''[/mm] = [mm]-g*\phi*l[/mm]
>  [mm]J*\phi''[/mm] + [mm]g*\phi*l[/mm]
>  
> Dies legt dann dorch den Verdacht nahe, dass eine
> Amplitudenabhängigkeit vorhanden ist? Denn wenn die
> Amplitude grösser wird, wird auch [mm]\phi[/mm] grösser. Aber mir
> ist es leider noch ein Rätsel, wie wo was

Aber das  [mm] \phi [/mm] ist doch die Amplitude.

Die Lösung der DGL ist doch [mm] \phi(t)=\phi_0*\sin(\omega*t) [/mm]
Das [mm] \phi(t) [/mm] ist die momentane Auslenkung, aber die Winkelgeschwindigkeit der Schwingung [mm] \omega [/mm] hat damit nix zu tun.
natürlich wird die Geschwindigkeit größer, mit der das Pendel durch seine Ruhelage geht, aber es macht immer gleich viele Schwingungen pro Sekunde.


>  
>
>
> b) Die Eigenfrequenz eines Drehpendels ist
> amplitudenabhängig.
>  ω = [mm]\wurzel{\bruch{c}{J}}[/mm]
>  Gemäss Lösung ist dies flasch Doch weshalb?

Die Aussage ist falsch, ja. Der Grund ist, daß da die gleiche Rechnung wie bei a) hinter steckt, nur daß das [mm] \omega [/mm] sich nun ein wenig anders berechnet.

>  
> c) Die Schwingungfrequenz eines
> geschwindigkeitsproportional gedämpften Drehpendels hängt
> vom Dämpfungsgrad ab
>  ω_d = [mm]ω_0*\wurzel{1 -D^2}[/mm]
>  Also hier kommt das
> Dämpfungsgrad in der Formel vor, also ist die Frequenz vom
> Dämpfungsgrad abhängig.

korrekt.

>  
> d) Die Schwingungsfrequenz eines
> geschwindigkeitsproportional gedämpften Feder-masse
> Schwingers ist amplitudenabhängig.
>  
> Leider fehlt mir hier das verständnis

naja, die Formel steht bei c) ja schon, steckt da auch eine Amplitude drin?






Bezug
                
Bezug
Amplitude: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:15 Mo 24.01.2011
Autor: Kuriger

Hallo


Wie bitte? Weil die Formel keinen Amplitudenabhängigen Term beinhaltet ist die Eigenfrequenz Amplitudenabhängig? Was soll das?


Gruss Kuriger

Bezug
                        
Bezug
Amplitude: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Mi 26.01.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de