www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Analytische Fortsetzung Funkt.
Analytische Fortsetzung Funkt. < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analytische Fortsetzung Funkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:13 Mo 07.03.2011
Autor: qsxqsx

Hallo,

Ich bin nicht sicher ob ich das Thema Analytische Fortsetzung richtig verstehe. Hier der Link:[]Analytische Fortsetzung.
Das ist zimlich formal (zu formal) für mich, einen nicht-mathematiker. Wollte aber mal aus interesse fragen, was genau die aussage dieser Fortsetzungsmöglichkeit ist?

Man nehme an, in einem Intervall [2,3] auf der x-Achse seien alle Werte y = f(x) bekannt. Dann ist die Funktion y = f(x) für alle x eindeutig bestimmbar? Kann man das so einfach sagen?
Ich meine, klar, haben wir z.B. 7 Punkte x und jeweils f(x) gegeben, so lässt sich noch lange keine Funktion daraus bestimmen (höchstens ein Polynom 6. Ordnung).
Aber ich nehme ja an auf dem Intervall seien alle Punkte x zu f(x) zugeordnet. Dann hat es ja im Prinzip Unendlich viele Punkte in dem Intervall. Die Taylorentwicklung braucht ja auch nur alle Ableitungen an einer(!) Stelle um die Funktion zu Rekonstruieren.
Trotzdem frage ich mich, ob die Funktion dann wirklich eindeutig bestimmbar ist oder nicht? Denn man kann doch an ein Stück f(x) in einem Intervall [a,b] einfach ein anderes Stück g(x) an [mm] [b,\infty] [/mm] anhängen indem man f(b) = g(b), f'(b) = g'(b), f''(b) = g''(b) gleichsetzt. Dann ist der Übergang doch analytisch?

Danke.

Gruss

        
Bezug
Analytische Fortsetzung Funkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 21:11 Mo 07.03.2011
Autor: rainerS

Hallo!

> Hallo,
>  
> Ich bin nicht sicher ob ich das Thema Analytische
> Fortsetzung richtig verstehe. Hier der
> Link:[]Analytische Fortsetzung.
>  Das ist zimlich formal (zu
> formal) für mich, einen nicht-mathematiker. Wollte aber
> mal aus interesse fragen, was genau die aussage dieser
> Fortsetzungsmöglichkeit ist?
>  
> Man nehme an, in einem Intervall [2,3] auf der x-Achse
> seien alle Werte y = f(x) bekannt. Dann ist die Funktion y
> = f(x) für alle x eindeutig bestimmbar? Kann man das so
> einfach sagen?
>  Ich meine, klar, haben wir z.B. 7 Punkte x und jeweils
> f(x) gegeben, so lässt sich noch lange keine Funktion
> daraus bestimmen (höchstens ein Polynom 6. Ordnung).
>  Aber ich nehme ja an auf dem Intervall seien alle Punkte x
> zu f(x) zugeordnet. Dann hat es ja im Prinzip Unendlich
> viele Punkte in dem Intervall. Die Taylorentwicklung
> braucht ja auch nur alle Ableitungen an einer(!) Stelle um
> die Funktion zu Rekonstruieren.

Das ist nicht ganz richtig: es muss in jedem Punkt des Intervalls eine endliche offene Umgebung geben, sodass die Taylorentwicklung um diesen Punkt in dieser Umgebung konvergiert und die Funktion darstellt.

Wenn es einen Punkt in diesem Intervall gibt, sodass die Taylorentwicklung um diesen Punkt im gesamten Intervall konvergiert und die Funktion darstellt, dann stimmt deine Aussage.

Das berühmte Gegenbeispiel ist die Funktion

[mm] f(x) = \begin{cases} \exp\left(-\bruch{1}{x^2}\right), & x\not = 0 \\ 0, & x= 0 \end{cases} [/mm]

die auf ganz [mm] $\IR$ [/mm] definiert und beliebig oft differenzierbar ist, deren Taylorreihe um 0 aber nur im Punkt $x=0$ konvergiert und identisch gleich 0 ist. Diese Funktion ist also im Punkt 0 und damit in [mm] $\IR$ [/mm] nicht analytisch, wohl aber in jedem offenen Intervall, das den Punkt 0 nicht enthält.


>  Trotzdem frage ich mich, ob die Funktion dann wirklich
> eindeutig bestimmbar ist oder nicht? Denn man kann doch an
> ein Stück f(x) in einem Intervall [a,b] einfach ein
> anderes Stück g(x) an [mm][b,\infty][/mm] anhängen indem man f(b)
> = g(b), f'(b) = g'(b), f''(b) = g''(b) gleichsetzt. Dann
> ist der Übergang doch analytisch?

Nein, nur wenn alle, beliebig hohen Ableitungen von f und g an der Stelle b übereinstimmen, denn nur dann stimmen die Potenzreihen überein.

Viele Grüße
   Rainer

Bezug
                
Bezug
Analytische Fortsetzung Funkt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:24 Mi 09.03.2011
Autor: qsxqsx

Hallo Rainer,

........Danke........

Trotzdem schwer vorstellbar, dass jede Ableitung übereinstimmen muss. Intuitiv würde ja die zweite Ableitung für einen "schönen Übergang reichen" und man könnte jede beliebige Funktion anknüpfen.

Gruss!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de