www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Analytische Funktion
Analytische Funktion < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analytische Funktion: Aufgabe 4
Status: (Frage) beantwortet Status 
Datum: 13:48 Do 29.10.2009
Autor: Alaizabel

Aufgabe
Warum gilt: [mm] \cosz=0 [/mm] nur wenn [mm] z=(2*k+1)*\pi [/mm]

Hallo :)

hier meine letzte Frage zu analytischen Funktionen :)

also [mm] \cos [/mm] ist null bei allen vielfachen von [mm] \pi, [/mm] das ist mir bewusst.
deshalb würde ich [mm] 2k*\pi [/mm] noch verstehen, aber was sagt mir diese 1?
und warum ist das so?

Vielen lieben Dank für eure Mühen,

liebste Grüße :)

        
Bezug
Analytische Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:50 Do 29.10.2009
Autor: Gonozal_IX

Hiho,

also cos ist 0 bei [mm] \bruch{\pi}{2}, [/mm] bei vielfachen von [mm] \pi [/mm] ist es [mm] $\pm [/mm] 1$.
Also irgendwas stimmt bei deiner Aufgabe nicht.

mFG,
Gono.



Bezug
                
Bezug
Analytische Funktion: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:19 Do 29.10.2009
Autor: Alaizabel

Hallo Gono,

vielen Dank für deine Antwort, sry, da hab ich mal wieder alles durcheinander geschmissen :D

aber wenn k nun z.b. für [mm] \bruch{1}{4} [/mm] stehen würde passts ja wieder (ich weiß leider nicht wofür das k steht). Dann wäre [mm] (2*\bruch{1}{4}+1)\pi [/mm]
also [mm] x=(2*k+1)\pi [/mm] und y=0

Liebe Grüße und Danke für deine Hilfe :)

Liebe Grüße :)

Bezug
                        
Bezug
Analytische Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:25 Do 29.10.2009
Autor: fred97

Deine Aufgabe sollte wohl so lauten:

              $ cos(z) = 0 [mm] \gdw [/mm] z = [mm] \bruch{1}{2}(2k+1) \pi$ [/mm]   (k [mm] \in \IZ) [/mm]

FRED

Bezug
                        
Bezug
Analytische Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:40 Do 29.10.2009
Autor: MatheOldie

Hallo Aizabel,

2k+1 , k aus Z, gibt eine ungerade Zahl an.
2k , k aus Z gibt eine gerade Zahl an.

Mit der Formulierung von Fred werden also alle ungeradzahligen Vielfachen von Pi/2 charakterisiert.

Gruß, MatheOldie

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de