www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Analytische Geometrie
Analytische Geometrie < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analytische Geometrie: Abstand zweier Geraden im R³
Status: (Frage) beantwortet Status 
Datum: 14:09 Di 20.01.2009
Autor: baSSeL

Aufgabe
Gegeben seien die Geraden g1:  [mm] \begin{pmatrix} x \\ y \\ z \end{pmatrix} [/mm] = [mm] \begin{pmatrix} -5 \\ 8 \\ 0 \end{pmatrix} [/mm] +  [mm] \lambda[/mm]   [mm] \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} [/mm]
und g2: [mm] \begin{pmatrix} x \\ y \\ z \end{pmatrix} [/mm] = [mm] \begin{pmatrix} 0 \\ 5 \\ 7 \end{pmatrix} [/mm] + µ  [mm] \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} [/mm]

Betimmen Sie die Endpunkte P1 [mm] in [/mm] g1 und P2 [mm] in [/mm] g2 der kürzesten Strecke zwischen g1 und g2 sowie deren Länge d.

Hallo!
Ich habe ein Problem bei folgender Aufgabe.
kein Problem ist es den Abstand d zu berechnen.
Jedoch muss ich dafür die Punkte P1 und P2 zuerst berechnen, habe aber keine Ahnung wie ich das machen soll.
Mein Lehrbuch behandelt diese Art Aufgabe, jedoch sind in den Beispielaufgaben immer die Punkte P1 und P2 gegeben.
Ich würde mich über einen kleinen Tipp freuen.

mfG Basti


ps: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Analytische Geometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 14:33 Di 20.01.2009
Autor: reverend

Hallo baSSeL, [willkommenmr]

die Geraden sind ja nicht parallel, wie Du sicherlich überprüft hast. Sie schneiden sich also, oder stehen windschief zueinander. Diese Fälle muss man nicht unterscheiden, weil sie im folgenden an unterschiedlichen Ergebnissen kenntlich werden:

Gesucht ist der kürzeste Abstand zwischen den Geraden. Wenn der 0 ist, schneiden sie sich natürlich.

Ansonsten verläuft die gesuchte Strecke in einer Richtung, die senkrecht zu beiden Geraden und damit deren Richtungsvektoren steht. Wäre nur der Abstand der Geraden zu ermitteln, gäbe es nun einen einfacheren Weg, aber da explizit die Strecke und ihre Fußpunkte gesucht sind, führt um das Folgende kein Weg herum:

Wenn Du den Richtungsvektor [mm] \vec{n_0} [/mm] der gesuchten Strecke ermittelt und normiert hast, dann ist zu bestimmen:

[mm] \overline{OP_1}=\begin{pmatrix} -5 \\ 8 \\ 0 \end{pmatrix}+\lambda_0*\begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} [/mm]

[mm] \overline{OP_2}=\begin{pmatrix} 0 \\ 5 \\ 7 \end{pmatrix}+\mu_0 \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} [/mm]

und zwar aus dieser Beziehung:
[mm] \begin{pmatrix} -5 \\ 8 \\ 0 \end{pmatrix}+\lambda_0*\begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}+\sigma*\vec{n}=\begin{pmatrix} 0 \\ 5 \\ 7 \end{pmatrix}+\mu_0 \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} [/mm]

Das ergibt ein lösbares LGS für die drei Variablen [mm] \lambda_0, \mu_0, \sigma. [/mm]

Der kürzeste Abstand ist dann [mm] |\sigma|. [/mm]

Und jetzt: viel Erfolg beim Rechnen!
Grüße,
reverend

PS: Normalerweise fallen die Tipps hier kleiner aus, und Du wirst auch aufgefordert, mehr Eigenleistung zu erbringen, mindestens die nötigen Definitionen, besser schon etwas eigenes Gehirnschmalz. So besagen es die Forenregeln.
Da Du aber löblicherweise direkt den Formeleditor einsetzt - bei Vektoren ja nicht ganz einfach -, hast Du für einen "newbie" schon viel Einsatz gezeigt. Übrigens finde ich die Vektor-Schreibweise
\vektor{a \\ b \\ c} für [mm] \vektor{a \\ b \\ c} [/mm] praktischer.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de