www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Analytische geometire
Analytische geometire < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analytische geometire: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:26 Di 18.10.2005
Autor: bionda

Habe diese Frage in keinem anderen forum gestellt...

Hi,
es wäre super, wenn ihr mir helfen könntet...
Wie kann ich herausfinden, wie viele ganzzahlige Lösungen es gibt, wenn ich eine Gleichung mit drei unbekannten gegeben habe???
Es ist doch nicht sehr schön, wenn man durch Rumprobieren auf eine mögliche Lösung kommt, oder???
Liebe Grüße

        
Bezug
Analytische geometire: keine allgemeine Lösung
Status: (Antwort) fertig Status 
Datum: 21:21 Di 18.10.2005
Autor: leduart

Hallo Bionda
Dazu gibts keine allgemeine Antwort! a+b+c=0 hat unendlich viele Lösungen, damit auch a+b+c=ganze Zahl. k*a+l*b+c=ganze Zahl hat auch wieder unendlich viele Lösg. für k,lganz.
Aber was für Gleichungen meinst du genauer? meist kann man für a,b irgendwas einsetzen und dann feststellen obs noch ne Lösung für c gibt.
Vielleicht stellst du die Frage genauer?
Gruss leduart

Bezug
                
Bezug
Analytische geometire: weitere frage/ergänzung
Status: (Frage) beantwortet Status 
Datum: 23:04 Di 18.10.2005
Autor: bionda

Danke für die Antwort.
Wenn ich zum beispiel herausfinden möchtem wieviele Lösungen (ganze Zahlen) es für folgende Gleichung gibt:
7d+ 3e+ 5f = 60
Wie kann ich da vorgehen????
Würde mich über eine Antowrt freuen.
Gruß

Bezug
                        
Bezug
Analytische geometire: Vorgehensweise
Status: (Antwort) fertig Status 
Datum: 07:48 Mi 19.10.2005
Autor: statler

Guten Morgen Bionda!

>  Wenn ich zum beispiel herausfinden möchtem wieviele
> Lösungen (ganze Zahlen) es für folgende Gleichung gibt:
>  7d+ 3e+ 5f = 60
>  Wie kann ich da vorgehen????

Fang mal mit 2 Unbekannten an (oder setz in deinem Beispiel einfach erstmal f = 0). Anschließend suchst du eine Lösung von 7d + 3e = 1. Die findest du z. B. durch den Euklidschen Algorithmus oder durch Probieren (d = 1, e = -2). Dann ist natürlich d = 60 und e = -120 eine Lösung von 7d + 3e = 60. Jetzt suche ich Lösungen von 7d + 3e = 0. Das ist ganz einfach: d = -3 und e = 7; d = -6 und e = 14; d = -9 und e = 21 naja usw. Und aus diesem ganzen Kram kann ich mir jetzt Lösungen von 7d + 3e = 60 zusammenbauen. Das überlasse ich freundlicherweise dir.

Und wenn du oben f = 1 nimmst, geht es von vorne los. Das Ganze gehört in die Anfänge der Zahlentheorie und wird dort unter "Lösen von Kongruenzen" geführt. Für weitere Fragen stehe ich dir gerne zur Verfügung :-).

>  Würde mich über eine Antowrt freuen.

Und, tust es?

Gruß aus HH-Harburg
Dieter



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de