www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentialgleichungen" - Anfangswertproblem
Anfangswertproblem < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anfangswertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:49 Sa 27.09.2008
Autor: ueberforderter_Ersti

Aufgabe
$ [mm] \begin{cases}y'(x)=y(x)-2sin(x), &\text{für } t \in [0,5]\\y(0)=1\end{cases}\,. [/mm] $

Ich habe diese Diff.gleichung exakt zu lösen.
Meine Lösung, welche die erste Bedingung erfüllt ist:
[mm] y(t)=-2e^{t}\integral{sin(t)e^{-t}dt} [/mm]
Die Lösung sieht mir aber viel zu kompliziert aus. Zumal angegeben wurde, dass es eine Linearkombination von sin und cos sei.. Was habe ich falsch gemacht? Und könnte ich die [mm] -2e^{t} [/mm] ins Integral nehmen? Dann würde das doch schon viel angenehmer aussehen..
Wäre sehr froh um einen Tipp (oder auch zwei =))
Vielen Dank, Ersti

        
Bezug
Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 20:00 Sa 27.09.2008
Autor: MathePower

Hallo  ueberforderter_Ersti,

> [mm]\begin{cases}y'(x)=y(x)-2sin(x), &\text{für } t \in [0,5]\\y(0)=1\end{cases}\,.[/mm]
>  
> Ich habe diese Diff.gleichung exakt zu lösen.
>  Meine Lösung, welche die erste Bedingung erfüllt ist:
>  [mm]y(t)=-2e^{t}\integral{sin(t)e^{-t}dt}[/mm]
>  Die Lösung sieht mir aber viel zu kompliziert aus. Zumal
> angegeben wurde, dass es eine Linearkombination von sin und
> cos sei.. Was habe ich falsch gemacht? Und könnte ich die
> [mm]-2e^{t}[/mm] ins Integral nehmen? Dann würde das doch schon viel
> angenehmer aussehen..

Nichts hast Du falsch gemacht.

Das Integral [mm]\integral{sin(t)e^{-t}dt}[/mm] löst Du mit Hilfe der partiellen Integration.


> Wäre sehr froh um einen Tipp (oder auch zwei =))
>  Vielen Dank, Ersti


Gruß
MathePower

Bezug
                
Bezug
Anfangswertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:08 Sa 27.09.2008
Autor: ueberforderter_Ersti

Herzlichen dank für die schnelle Antwort!
Das freut mich jetzt richtig, dass ich das gar nicht so verkehrt gemacht habe =) An partielle Integration habe ich auch schon gedacht, nur komme ich da auf einen grünen Zweig? Ich meine sowohl sinus als auch die Exponetialfunktion sind ja unenedlich oft integrierbar/differenzierbar..
Merci, Ersti

Bezug
                        
Bezug
Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 20:49 Sa 27.09.2008
Autor: MathePower

Hallo ueberforderter_Ersti,

> Herzlichen dank für die schnelle Antwort!
>  Das freut mich jetzt richtig, dass ich das gar nicht so
> verkehrt gemacht habe =) An partielle Integration habe ich
> auch schon gedacht, nur komme ich da auf einen grünen
> Zweig? Ich meine sowohl sinus als auch die
> Exponetialfunktion sind ja unenedlich oft
> integrierbar/differenzierbar..


Nach endlich vielen Schritten (hier: 2) kommst Du zum Ziel.

Alternative ist, wenn Du die komplexe Form des Sinus verwendest:

[mm]\sin\left(t\right)=\bruch{e^{it}-e^{-it}}{2i}[/mm]

Das wird dann so integriert:

[mm]\integral_{}^{}{\sin\left(t\right) e^{-t} \ dt}=\integral_{}^{}{\left(\bruch{e^{it}-e^{-it}}{2i}\right) e^{-t} \ dt}[/mm]

Nach dem Integrieren mußt Du das ganze wieder rückgängig machen.

Beachte, daß auch

[mm]\cos\left(t\right)=\bruch{e^{it}+e^{-it}}{2}[/mm]

gilt.


>  Merci, Ersti  


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de