www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Anfangswertproblem Euler
Anfangswertproblem Euler < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anfangswertproblem Euler: Idee
Status: (Frage) beantwortet Status 
Datum: 00:50 Fr 22.06.2012
Autor: Lonpos

Aufgabe
y'=2y
y(0)=1

Wie groß ist n zu wählen, damit relativer Fehler [mm] \le{\bruch{1}{2}*10^{-4}} [/mm] in [0,1] ist für [mm] h=\bruch{1}{n} [/mm]


Es handelt sich hierbei um das Euler-Verfahren und h bezeichnet die Schrittweite.

Exakte Lösung: [mm] y(t)=e^{2t} [/mm]

Approximation: [mm] y^i=(1+2h)^{\bruch{t_i}{h}} [/mm] wobei [mm] t_{i+1}=t_i+h_i [/mm]

Wie muss ich nun die Ungleichung ansetzen damit ich das gewüschte n berechnen kann?

        
Bezug
Anfangswertproblem Euler: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:41 Fr 22.06.2012
Autor: Lonpos

Jemand eine Idee?

Bezug
        
Bezug
Anfangswertproblem Euler: Antwort
Status: (Antwort) fertig Status 
Datum: 13:08 Fr 22.06.2012
Autor: gaylussac0815

Das Schema ist meist dasselbe:

Du bildest die Differenz deiner Exakten Lösung und der Aproximierten Lösung und setzt dies gleich deiner Schranke. Anschileßend musst du abschätzen, für/ab welches n deine Gleichung/Ungleichung gilt.

Schaust du hier falls es immernoch nicht klappt:

http://www.wissenschaft-online.de/spektrum/projekt2/gaes4.htm

LG gaylussac0815

Bezug
                
Bezug
Anfangswertproblem Euler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:49 Fr 22.06.2012
Autor: Lonpos

Und was mache ich mit dem t und [mm] t_i [/mm] ?

Bezug
                        
Bezug
Anfangswertproblem Euler: Antwort
Status: (Antwort) fertig Status 
Datum: 14:56 Fr 22.06.2012
Autor: leduart

Hallo
ich finde in dem link ist das sehr gut erklärt. was daran verstehst du denn nicht? und was soll das mit dem [mm] t_i [/mm] darin?
du suchst doch eine abschätzung des Fehlers, die auf dem ganzen Intervall gilt, also auch noch bei 1, die Fehler für keinere t sind natürlich kleiner.
gruss leduart

Bezug
                                
Bezug
Anfangswertproblem Euler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:05 Fr 22.06.2012
Autor: Lonpos

Ich habe folgendes Problem, wenn ich die Ungleichung ansetze, erhalte ich folgendes:

[mm] |e^{2t}-(1+2h)^{\bruch{t}{h}}|\le{\bruch{1}{2}*10^{-4}} [/mm]

Der 1.Term ist nun (da I=[0,1] und h=1/n) kleiner gleich

[mm] |e^{2}-(1+\bruch{2}{n})^{n}|, [/mm] aber hier kann ich die Ungleichung nicht mehr nach n auflösen.

Bezug
                                        
Bezug
Anfangswertproblem Euler: Antwort
Status: (Antwort) fertig Status 
Datum: 21:40 Fr 22.06.2012
Autor: leduart

Hallo
das [mm] e^{|2t} [/mm] hat mit der Fehlerabschätzung nichts zu tun, wie du dem link entnehmen kannst ist die exakte Lösung ja i.A. nicht bekannt, wenn man sie hätte warum dann numerisch lösen? Du sollst hier mit dem Eulerverfahren umgehem lernen, deshalb diese einfache Funktion.
Also noch mal warum richtest du dich nicht nach dem link?
und wahrscheinlich gabs auch in der vorlesung eine Fehlerabschätzung, sonst gäbe es die aufgabe micht!
Aber warum kannst du deine Ungl nicht nach n auflösen?
lass einfach mal den Betrag weg!
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de