www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Anfangswertproblem lösen
Anfangswertproblem lösen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anfangswertproblem lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:49 Sa 08.06.2013
Autor: Apfelchips

Aufgabe
Lösen Sie das folgende Anfangswertproblem:

[mm]\ddot y + y = 4 \cdot sin(t), \quad y(0) = 1, \quad \dot y(0) = 0[/mm]



Hallo zusammen,

ich bekomme es leider nicht hin, die spezielle Lösung zu ermitteln:

Homogene Gleichung
[mm]y_h'' + y_h = 0[/mm]

Charakteristisches Polynom der DGL:
[mm]y_h(t) = e^{\lambda \cdot t}[/mm]
also: [mm]\left( (e^{\lambda*t} \right)'' + e^{\lambda*t} = 0 \iff \lambda^2 +1 = 0 \Rightarrow \lambda_1 = i, \quad \lambda_2 = -i[/mm]

Homogene Lösung:
[mm]\lambda_1, \lambda_2[/mm] sind zueinander komplex konjugiert, also ist die reelle Lösung der homogenen DGL:
[mm]y_h = c_1 \cdot e^{0 \cdot t} * cos(1 \cdot t) + c_2 \cdot e^{0 \cdot t} * sin(1 \cdot t) = c_1 \cdot cos(t) + c_2 \cdot sin(t)[/mm]

Spezielle Lösung:
Aus einer Tabelle habe ich für eine Störfunktion der Form [mm](b_0 + b_1 \cdot x + ... + b_m \cdot x^m) \cdot sin(t)[/mm] mit b ungleich 0 den Lösungsansatz [mm](A_0 + A_1 \cdot x + ... + A_m \cdot x^m) \cdot cos(bx) + (B_0 + B_1 \cdot x + ... + B_m \cdot x^m) \cdot sin(bx)[/mm] entnommen.

Das heißt also, dass die spezielle Lösung so aussehen muss:
[mm]y_s(t) = A \cdot sin(t) + B \cdot cos(t)[/mm]

Mittels Koeffizientenvergleich sollte man nun ja in der Lage sein, A und B zu bestimmen und dann die spezielle Lösung einfach an die homogene Lösung "dranzuaddieren", um die allgemeine Lösung zu erhalten.

Allerdings stoße ich hier beim Koeffizientenvergleich auf einen Fehler:
[mm]y_s'(t) = A \cdot cos(t) - B \cdot sin(t)[/mm]
[mm]y_s''(t) = -A \cdot sin(t) - B \cdot cos(t)[/mm]

Wenn ich das nun in [mm]y'' + y = 4 \cdot sin(t)[/mm] einsetze, dann ergibt das (nach etwas Umformen):
[mm](-A+A) \cdot sin(t) + (-B+B) \cdot cos(t) = 4 \cdot sin(t) + 0 \cdot cos(t)[/mm]

Nun kann [mm]-A+A[/mm] natürlich nie gleich 4 sein.

Was ist hier schiefgelaufen? An welcher Stelle habe ich einen Fehler gemacht?

Ich hoffe, Ihr könnt mir hier weiterhelfen.

Viele Grüße
Patrick

        
Bezug
Anfangswertproblem lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:02 Sa 08.06.2013
Autor: MathePower

Hallo Apfelchips,

> Lösen Sie das folgende Anfangswertproblem:
>  
> [mm]\ddot y + y = 4 \cdot sin(t), \quad y(0) = 1, \quad \dot y(0) = 0[/mm]
>  
>
> Hallo zusammen,
>  
> ich bekomme es leider nicht hin, die spezielle Lösung zu
> ermitteln:
>  
> Homogene Gleichung
>  [mm]y_h'' + y_h = 0[/mm]
>  
> Charakteristisches Polynom der DGL:
>  [mm]y_h(t) = e^{\lambda \cdot t}[/mm]
>  also: [mm]\left( (e^{\lambda*t} \right)'' + e^{\lambda*t} = 0 \iff \lambda^2 +1 = 0 \Rightarrow \lambda_1 = i, \quad \lambda_2 = -i[/mm]
>  
> Homogene Lösung:
>  [mm]\lambda_1, \lambda_2[/mm] sind zueinander komplex konjugiert,
> also ist die reelle Lösung der homogenen DGL:
>  [mm]y_h = c_1 \cdot e^{0 \cdot t} * cos(1 \cdot t) + c_2 \cdot e^{0 \cdot t} * sin(1 \cdot t) = c_1 \cdot cos(t) + c_2 \cdot sin(t)[/mm]
>  
> Spezielle Lösung:
>  Aus einer Tabelle habe ich für eine Störfunktion der
> Form [mm](b_0 + b_1 \cdot x + ... + b_m \cdot x^m) \cdot sin(t)[/mm]
> mit b ungleich 0 den Lösungsansatz [mm](A_0 + A_1 \cdot x + ... + A_m \cdot x^m) \cdot cos(bx) + (B_0 + B_1 \cdot x + ... + B_m \cdot x^m) \cdot sin(bx)[/mm]
> entnommen.
>  
> Das heißt also, dass die spezielle Lösung so aussehen
> muss:
>  [mm]y_s(t) = A \cdot sin(t) + B \cdot cos(t)[/mm]
>  
> Mittels Koeffizientenvergleich sollte man nun ja in der
> Lage sein, A und B zu bestimmen und dann die spezielle
> Lösung einfach an die homogene Lösung "dranzuaddieren",
> um die allgemeine Lösung zu erhalten.
>  
> Allerdings stoße ich hier beim Koeffizientenvergleich auf
> einen Fehler:
>  [mm]y_s'(t) = A \cdot cos(t) - B \cdot sin(t)[/mm]
>  [mm]y_s''(t) = -A \cdot sin(t) - B \cdot cos(t)[/mm]
>  
> Wenn ich das nun in [mm]y'' + y = 4 \cdot sin(t)[/mm] einsetze, dann
> ergibt das (nach etwas Umformen):
>  [mm](-A+A) \cdot sin(t) + (-B+B) \cdot cos(t) = 4 \cdot sin(t) + 0 \cdot cos(t)[/mm]
>  
> Nun kann [mm]-A+A[/mm] natürlich nie gleich 4 sein.
>  
> Was ist hier schiefgelaufen? An welcher Stelle habe ich
> einen Fehler gemacht?
>  


Beim Ansatz der speziellen Lösung.

Dieser ist mit t zu multiplizieren,
da [mm]\sin\left(t\right)[/mm] eine Lösung der homogenen DGL ist.

Demnach lautet der Ansatz:

[mm]y_s(t) = \blue{t}*\left(A \cdot sin(t) + B \cdot cos(t)\right)[/mm]


> Ich hoffe, Ihr könnt mir hier weiterhelfen.
>  
> Viele Grüße
>  Patrick


Gruss
MathePower

Bezug
                
Bezug
Anfangswertproblem lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:57 So 09.06.2013
Autor: Apfelchips

Hallo MathePower,

> Beim Ansatz der speziellen Lösung.
>  
> Dieser ist mit t zu multiplizieren,
> da [mm]\sin\left(t\right)[/mm] eine Lösung der homogenen DGL ist.
>  
> Demnach lautet der Ansatz:
>  
> [mm]y_s(t) = \blue{t}*\left(A \cdot sin(t) + B \cdot cos(t)\right)[/mm]

vielen Dank – jetzt komme ich auch auf eine vernünftige allgemeine Lösung:
[mm]y(t) = c_1 \cdot cos(t) + c_2 \cdot sin(t) - 2t \cdot cos(t)[/mm]

Die Lösung des AWPs lautet demnach:
[mm]y(t) = cos(t) + 2 \cdot sin(t) - 2t \cdot cos(t)[/mm]

Viele Grüße
Patrick

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de