www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Anordnung von Büchern
Anordnung von Büchern < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anordnung von Büchern: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:43 So 08.03.2009
Autor: jeada

Aufgabe
Eine fleißige Hausfrau staubt jeden Morgen 10 Bücher ab, die nebeneinander auf einem
Regal stehen. Sie nimmt zu diesem Zwecke alle 10 Bücher vom Regal und stellt sie nach
der Reinigung wieder wahllos zurück.

Unter den 10 Bänden sei ein dreibändiges Lexikon. Man berechne die Wahrscheinlichkeit,
daß die drei Bände des Lexikons nach der Reinigung nebeneinander stehen.

Hallo, hier erstmal meine Überlegungen.

Bücher  x
Lexikon o

Nun gibt es 8 mögliche Anordnungen:
oooxxxxxxx
xoooxxxxxx
xxoooxxxxx
...
xxxxxxxooo

Diese Bücher und Lexika können allerdings noch permutieren also:  [mm] \bruch{8+7!+3!}{10!} [/mm]
edit: Die Möglichkeiten summiere ich auf oder? Hatte zuerst multipliziert.

Stimmt mein Gedankengang?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

lg, Danke im Vorraus!

        
Bezug
Anordnung von Büchern: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 So 08.03.2009
Autor: angela.h.b.


> Eine fleißige Hausfrau staubt jeden Morgen 10 Bücher ab,
> die nebeneinander auf einem
>  Regal stehen. Sie nimmt zu diesem Zwecke alle 10 Bücher
> vom Regal und stellt sie nach
>  der Reinigung wieder wahllos zurück.
>  
> Unter den 10 Bänden sei ein dreibändiges Lexikon. Man
> berechne die Wahrscheinlichkeit,
>  daß die drei Bände des Lexikons nach der Reinigung
> nebeneinander stehen.
>  Hallo, hier erstmal meine Überlegungen.
>  
> Bücher  x
>  Lexikon o
>  
> Nun gibt es 8 mögliche Anordnungen:
>  oooxxxxxxx
>  xoooxxxxxx
>  xxoooxxxxx
>  ...
>  xxxxxxxooo
>  
> Diese Bücher und Lexika können allerdings noch permutieren
> also:  [mm]\bruch{8+7!+3!}{10!}[/mm]
>  edit: Die Möglichkeiten summiere ich auf oder? Hatte
> zuerst multipliziert.

Hallo,

multiplizieren ist richtig.

> Stimmt mein Gedankengang?

Ja.
Ich habe mit einer geringfügig anderen Überlegung dasselbe Ergebnis erhalten.

Gruß v. Angela

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> lg, Danke im Vorraus!


Bezug
                
Bezug
Anordnung von Büchern: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 So 08.03.2009
Autor: jeada

Danke erstmal!

Hmm, wieso werden die Möglichkeiten multipliziert? *schäm*

Dürft ich deinen Lösungsweg bitte sehen? Würde mir gern Anregungen für weitere Beispiele holen.

Bezug
                        
Bezug
Anordnung von Büchern: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 So 08.03.2009
Autor: angela.h.b.


> Danke erstmal!
>  
> Hmm, wieso werden die Möglichkeiten multipliziert? *schäm*

Hallo,

stell Dir vor, Du hättest  Teller rot, blau, gelb, lila,  und Tassen in den Farben  rot, blau, gelb.


Du hast folgende Möglichkeiten


Teller        Tassen    
  
rot                rot
                   blau
                   gelb

blau               rot
                   blau
                   gelb

gelb               rot
                   blau
                   gelb

lila                rot
                   blau
                   gelb

Gibt 4*3  Kombinationsmöglichkeiten.
Ebenso ist das bei Deinem Beispiel auch so.


Ich hatte mir das so überlegt:

Die Gesamtanzahl der Möglichkeiten dafür, die Bücher aufzustellen, ist  10!.

Dann habe ich mir vorgestelltt, daß die Lexikonbände fest zusammengeschnürt werden, so daß ich nur 8 Objekte einzuordnen habe:  8! Möglichkeiten

Da die Lexika in verschiedener Reihenfolge stehen können, kommt noch der Faktor 3! hinzu.

Insgesamt  gibt's also 8!*3!  Möglichkeiten, so zu stellen, wie gefordert.

Gruß v. Angela

Bezug
        
Bezug
Anordnung von Büchern: Nachtrag
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:35 So 08.03.2009
Autor: angela.h.b.

Hallo,

ich war so begeistert, daß ich mal ein kombinatorisches Problem lösen konnte, daß mir ganz entgangen ist, daß Du neu bei uns bist:

[willkommenmr]

Gruß v. Angela

Bezug
                
Bezug
Anordnung von Büchern: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:48 So 08.03.2009
Autor: jeada

Dank dir sehr :) Ich hab schonmal vor nem Jahr oder so eine Frage gestellt ;)

Bin begeistert von dieser community und sollte öfters vorbeisehen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de