Anordnungsaxiome < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:21 So 25.04.2010 | Autor: | melisa1 |
Aufgabe | Beweisen Sie aus den Axiomen (A1)–(A14):
(a) Für a [mm] \in [/mm] R folgt aus a [mm] \le [/mm] 0, dass -a [mm] \ge [/mm] 0.
(b) Sind a, b, c [mm] \in [/mm] R und gilt a [mm] \le [/mm] b und c [mm] \le [/mm] 0, so ist ac [mm] \ge [/mm] bc.
(c) 1 > 0.
(d) Für alle a [mm] \in [/mm] R ist [mm] a^2 \ge [/mm] 0. |
Hallo,
würde mich freuen, wenn jemand mal drüber schauen kann
a) a<0=(A3) a+(-a)<0+(-a)=0 [mm] \le [/mm] 0+(-a)=(A2) 0 [mm] \le [/mm] -a+0=0 [mm] \le [/mm] -a
(ich habe über " =" auch immer stehen, welchen axiom ich verwendet habe. In latex kann ich das leider nicht =) )
b) a [mm] \le [/mm] b= (A6) a*1 [mm] \le [/mm] b*1= (da wenn c [mm] \le [/mm] 0 ist nach a) -c [mm] \ge [/mm] 0) a*(-c) [mm] \le [/mm] b*(-c)
weiter komme ich hier leider nicht :S
c) Nehmen wir an 1<0 so wäre d [mm] 1^2=1>0 [/mm] im Widerspruch zu 1<0
d) [mm] a^2 \ge [/mm] 0
a < 0 dann ist -a>0 nach a) auch [mm] (-a)^2=a^2>0 [/mm] bzw. (-a)(-a)>0
Ich bedanke mich im voraus
Lg Melisa
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:27 Mo 26.04.2010 | Autor: | chrisno |
Ohne die Liste mit den 14 Axiomen kann ich nichts dazu sagen. Du kannst ja einfach zeilenweise und hinter jede Folgerung das jeweilige Axiom (Ax) schreiben.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:36 Mo 26.04.2010 | Autor: | melisa1 |
Hallo,
ich wollte erwähnen, dass die Frage nicht überfällig ist und die Gesetze anschreiben:
(A1) a + (b + c) = (a + b) + c für alle a, b, c [mm] \in [/mm] R (Assoziativgesetz der Addition).
(A2) Es gibt ein Element 0 [mm] \in [/mm] R, so dass a + 0 = a für alle a [mm] \in [/mm] R (Nullelement).
(A3) Für jedes a [mm] \in [/mm] R gibt es ein −a ∈ R, so dass a + (−a) = 0 gilt (additives
inverses Element).
(A4) a + b = b + a f¨ur alle a, b [mm] \in [/mm] R (Kommutativgesetz der Addition).
(A5) a · (b · c) = (a · b) · c f¨ur alle a, b, c [mm] \in [/mm] R (Assoziativgesetz der Multiplikation).
(A6) Es gibt ein Element 1 [mm] \in [/mm] R mit 1 6= 0, so dass a · 1 = a f¨ur alle a [mm] \in [/mm] R
(Einselement).
(A7) F¨ur jedes a [mm] \in [/mm] R \ {0} gibt es ein a−1 [mm] \in [/mm] R, so dass a · a−1 = 1 gilt (multiplikatives
inverses Element).
(A8) a · b = b · a f¨ur alle a, b [mm] \in [/mm] R (Kommutativgesetz der Multiplikation).
(A9) a · (b + c) = a · b + a · c f¨ur alle a, b, c [mm] \in [/mm] R (Distributivgesetz ).
(A10) F¨ur jede Wahl von a, b [mm] \in [/mm] R gilt stets a ≤ b oder b ≤ a (Totalordnung).
(A11) Gelten f¨ur zwei Zahlen a, b [mm] \in [/mm] R die beiden Aussagen a ≤ b und b ≤ a, so
ist a = b.
(A12) Wenn f¨ur drei Zahlen a, b, c [mm] \in [/mm] R sowohl a ≤ b, als auch b ≤ c gilt, so ist
auch a ≤ c (Transitivit¨at).
(A13) Sind a, b, c [mm] \in [/mm] R und gilt a ≤ b, so ist auch a + c ≤ b + c.
(A14) Sind a, b, c [mm] \in [/mm] R und gilt a ≤ b und 0 ≤ c, so ist auch ac ≤ bc.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:29 Di 27.04.2010 | Autor: | chrisno |
>
> a)
a<0= (A3) a+(-a)<0+(-a)=
Hier geht es schon mit iner Reihe von Problemen los:
- [mm] $a\le0$ [/mm] soll da stehen und nicht $a<0$
- dann ist da Gleichheitszeichen falsch Du brauchst ein [mm] $\Rightarrow$
[/mm]
- weiterhin hast Du neben A3 auch noch A13 benutzt.
[mm]a+(-a) [mm] \le 0+(-a)\Rightarrow [/mm] 0 [mm] \le [/mm] -a[mm]
vor dem [mm] $\le$ [/mm] A3 dahinter A2
Nun hast Du noch das Problem, dass in der Aufgabe [mm] $\ge$ [/mm] steht, das in den Axiomen gar nicht vorkommt.
Habt ihr das definiert?
Zu b: Nun msst Du noch zeigen, dass [mm] $b\cdot(-c) [/mm] = -bc$ und dann kannst Du auf beiden Seiten ac + bc addieren.
Zu c: Die Idee ist gut, Du musst noch alle Axiome nennen
Zu d: Das ist viel zu schnell. Das merkst Du selbst, wenn Du beginnst, die Schritte aus den Axiomen zu begründen. Ich denke, Du wirst A14, beziehungsweise b) benötigen.
|
|
|
|