www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Anrufdichte
Anrufdichte < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anrufdichte: Dichte und Verteilungsfunktion
Status: (Frage) beantwortet Status 
Datum: 20:54 Sa 13.12.2014
Autor: Mathefreund22

Liebe Mathegemeinde, ist mein Ansatz richtig?  Danke!

Ein Kundenberater arbeitet in einem Call-Center.Er empfängt Anrufe aus aller Welt,d.h. aus allen Zeitzonen;aus diesem Grunde hängt die Häufigkeit der Anrufe nicht von der Tageszeit ab.

Sei nun t die (zufällige) Zeit zwischen zwei Anrufen,wobei wir diese Zeit in Sekunden messen.Die Erfahrung sagt,dass die Verteilungsfunktion V die folgende Struktur hat:Es gibt ein c > 0 mit

V(x) = p(t ≤ x) = 1 - $ [mm] e^{- cx} [/mm] $ für alle x ≥ 0

Dieser Wert V(x) beschreibt die Wahrscheinlichkeit dafür,dass es bis zum nächsten Anruf höchstens x Sekunden dauert.Oder anders ausgedrückt:Wenn man nach einem Anruf x Sekunden vergehen lässt,so ist V(x) die Wahrscheinlichkeit dafür,dass während dieser Zeitspanne ein neuer Anruf eingetroffen ist.
Der Vollständigkeit halber definieren wir

V(x) = p( t ≤ x ) = 0 für alle x < 0.^17

Bestimmen Sie diejenige zu V gehörende Dichtefunktion f,die folgendermaßen aufgebaut ist:


[mm] f(x)=\begin{cases} V'(x), & \mbox{ falls } x\not=0 \mbox{} \\ 0, & \mbox{falls } x=0 \mbox{ } \end{cases} [/mm]

Zeichnen Sie außerdem die Funktionsgraphen von V und f in ein Koordinatensystem.



Lösung:

[mm] V(X)=1-e^{-cx} [/mm]
V'(X)= -c [mm] \times -e^{-cx} [/mm]
Dann nach X auflösen.
0= -c [mm] \times -e^{-cx} [/mm]
Das geht nicht also ist  f(x)=0

Anrufwahrscheinlichkeit zwischen 1 und 2 Sekunden:

[mm] P[{1\le X \le2}] [/mm]

[mm] \integral_{1}^{2}{f(x) dx} [/mm]

Soweit schonmal richtig?



Grüße


        
Bezug
Anrufdichte: Antwort
Status: (Antwort) fertig Status 
Datum: 00:17 So 14.12.2014
Autor: DieAcht

Hallo Mathefreund22!


> [mm]V(X)=1-e^{-cx}[/mm]

Auf der linken Seite muss ein kleines [mm] $x\$ [/mm] stehen.

> V'(X)= -c [mm]\times -e^{-cx}[/mm]

Falsch. Richtig:

      [mm] V'(x)=(1-e^{-cx})'=-e^{-cx}*(-cx)'=c*e^{-cx}. [/mm]


Gruß
DieAcht

Bezug
                
Bezug
Anrufdichte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:41 So 14.12.2014
Autor: Mathefreund22

Hallo, vielen Dank, stimmt, minus mal minus hebt sich auf, ist f(x)=0 ?

Grüße

Bezug
                        
Bezug
Anrufdichte: Antwort
Status: (Antwort) fertig Status 
Datum: 00:46 So 14.12.2014
Autor: DieAcht


> stimmt, minus mal minus hebt sich auf,

Du hattest die innere Ableitung vergessen.

> ist f(x)=0 ?

Nein, es ist

      [mm] V'(x)=f(x)=ce^{-cx} [/mm] für alle [mm] $x\ge [/mm] 0$.


Bezug
                                
Bezug
Anrufdichte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:54 So 14.12.2014
Autor: Mathefreund22

ok, aber mein Problem ist anscheinend, dass ich

diese Funktion nicht so ganz verstehe:


$ [mm] f(x)=\begin{cases} V'(x), & \mbox{ falls } x\not=0 \mbox{} \\ 0, & \mbox{falls } x=0 \mbox{ } \end{cases} [/mm] $


Kann ich diese so lesen:
f(x)=V´(x)      wenn ich V'(x) nach x auflösen kann und [mm] x\not=0 [/mm]
oder
f(x)=0             wenn ich V(x) nach x auflösen kann und x = 0

Bezug
                                        
Bezug
Anrufdichte: Antwort
Status: (Antwort) fertig Status 
Datum: 09:41 So 14.12.2014
Autor: Infinit

Halo Mathefreund22,
ja, genau das heisst es.
Viele Grüße,
Infinit

Bezug
                                                
Bezug
Anrufdichte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:04 So 14.12.2014
Autor: Mathefreund22

Vielen Dank, aber habe ich mich nicht bei meiner vorherigen Frage geirrt? Man darf also nur V(x) nach x auflösen und nicht V'(x) nach x ?

Grüße

Bezug
                                                        
Bezug
Anrufdichte: Antwort
Status: (Antwort) fertig Status 
Datum: 00:03 Mo 15.12.2014
Autor: DieAcht


> Vielen Dank, aber habe ich mich nicht bei meiner vorherigen
> Frage geirrt? Man darf also nur V(x) nach x auflösen und
> nicht V'(x) nach x ?

Was meinst du denn mit auflösen? Wir haben [mm] $V\$ [/mm] nach [mm] $x\$ [/mm] abgeleitet.
Eine genaue Aufgabenstellung fehlt übrigens im kompletten Thread.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de