www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Anwendungsaufgabe
Anwendungsaufgabe < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anwendungsaufgabe: Idee
Status: (Frage) beantwortet Status 
Datum: 22:32 Fr 22.02.2008
Autor: tobi4maths

Aufgabe
Der Querschnitt eines unterirdischen Entwässerungskanals ist ein Rechteck mit aufgesetztem Halbkreis. Wie sind Breite und Höhe des Rechtecks zuwählen, damit die Querschnittsfläche 8m² groß ist und zur Ausmauerung des Kanals möglichst wenig Material benötigt wird?

A ges = [mm] \pi*r² [/mm] / 2 + a *b

A Rechteck = a * b = 8 also a = 8 /b

ich komm hier irgendwie nicht weiter wäre nett wenn jemand nen Tipp oder ne Idee geben kann....

        
Bezug
Anwendungsaufgabe: Techn.Problem
Status: (Antwort) fehlerhaft Status 
Datum: 23:45 Fr 22.02.2008
Autor: saftigeszebra

Hi, wollte hier jetzt meine erste Antowrt in diesem Forum schreiben, suche aber schon seit einer halben stunden die Möglichkeit wo ich diese Antwort eintragen kann.... stehe zwar da als "ich schreibe die antwort schon", aber dann passiert nix weiter

Also dann halt jetzt so:
Gesamtfläche = [mm] (a/2)^2*\pi/2 [/mm] + a*b
Umfang = a+b [mm] \pi [/mm] * a/2
aus [mm] 8m^2=(a/2)^2*\pi/2 [/mm] + a*b folgt: [mm] b=8m^2/a-a*\pi*1/8 [/mm]
In den Umfang b so einsetzen. Den Umfang dann als Funktion von a betrachten und ableiten. Dann gleich Null setzen, damit hat man die Extremwerte. Nur einer davon wird Sinn machen, falls es überhaupt mehrere gibt. Mit dem ausgerechneten Wert für a dann b ausrechnen (z.B. mit der Umfangs-Formel)

lg

Bezug
                
Bezug
Anwendungsaufgabe: Korrektur, Vervollständigung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 11:32 Sa 23.02.2008
Autor: dergee

In der Funktion, die den Umfang beschreibt ist ein Fehler aufgetaucht, der möglicherweise aber ein Formatierungsproblem ist.

Richtig muss die Funktion heißen

[mm] \Eqn{U = \pi * r + a + 2b} [/mm]                 mit                [mm] \Eqn{r = a/2} [/mm]

führt zu

[mm] \Eqn{U = a(\bruch{\pi}{2} + 1) + 2b} [/mm]

Die Fläche war

[mm] \Eqn{A = a * b + \bruch{\pi r^2}{2} = 8} [/mm]

Dieser Ausdruck wie oben geschildert, nach b umgestellt (das ist einfacher in den Umfang einzusetzen, als nach a umgestellt)

[mm] \eqn{b = (8 - \bruch{\pi * r^2}{2}) \bruch{1}{a}} [/mm]

Damit lässt sich der Umfang schreiben als

[mm] \eqn{U = (1 + \bruch{\pi}{4})a + \bruch{16}{a}} [/mm]

Diese Funktion muss nach einem Extremum untersucht werden, was wie bereits gesagt heißt, nach a ableiten und Null setzen. Da im Derivat des Umfangs ein quadratisches a vorkommen wird, sind zwei Ergebnisse zu erwarten, welche interpretiert werden müssen.

[mm] \eqn{\bruch{dU}{da}=(1 + \bruch{\pi}{4}) - \bruch{16}{a^2}=0} [/mm]

woraus folgt

[mm] \eqn{a = \wurzel{\bruch{16}{1+\bruch{\pi}{4}}} = \pm 2,99359} [/mm]

Es ist logisch, dass das positive Ergebnis das gesuchte ist. Damit können die Größen b und r bestimmt werden.

[mm] \eqn{r = a/2 = 1,49679} [/mm]

[mm] \eqn{b = (8 - \bruch{\pi*r^2}{2})\bruch{1}{a} = 1,49679} [/mm]

Zur Kontrolle kann nachgerechnet werden

[mm] \eqn{U = 8,33834 m} [/mm]     und       [mm] \eqn{A = 8 m^2} [/mm]



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de