www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Anwendungsaufgabe
Anwendungsaufgabe < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anwendungsaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:58 Do 25.08.2005
Autor: romanb

Wir behnadeln diese auf gabe zu beginn des ersten Semesters, als Einstieg:

Die Koste k(x) in 1000€ einer Ziegelei bei einer täglichen Produktion von x Einheiten a 10000 Ziegel können durch die funktion K(x) = [mm] 0,25x^3-3x^2+12x+17 [/mm] erfasst werden.
Untersuche die Ertragslage der Firma wenn die Ziegel für 80 cent pro Stück verkauft werden können, bei welcher Produktionsmenge ist der Gewinn am größten?

ich hoffe ihr könnt mir bei dieser Aufgabe helfen
schon mal im vorraus vielen Dank
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Anwendungsaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 01:22 Fr 26.08.2005
Autor: Andi

Hallo roman,

> Die Koste k(x) in 1000€ einer Ziegelei bei einer täglichen
> Produktion von x Einheiten a 10000 Ziegel können durch die
> funktion K(x) = [mm]0,25x^3-3x^2+12x+17[/mm] erfasst werden.
>  Untersuche die Ertragslage der Firma wenn die Ziegel für
> 80 cent pro Stück verkauft werden können, bei welcher
> Produktionsmenge ist der Gewinn am größten?

Also wenn ich dich richtig verstanden habe sind K(x) die Kosten, welche die Ziegelei hat wenn sie x mal 10 000 Ziegeln herstellt.

Der Gewinn berechnet sich dann wenn man von den Einnahmen die Kosten (Ausgaben) abzieht.  

Also könnte man für den Gewinn folgende Funktion aufstellen:

[mm]G(x)=x*10000*0,8€-(0,25x^3-3x^2+12x+17)*1000€[/mm]

Dies kann man natürlich noch ein wenig schöner schreiben:

[mm]G(x)=(8x-0,25x^3+3x^2-12x-17)*1000€[/mm]

[mm]G(x)=-0,25x^3+3x^2-4x-17[/mm]

So von dieser Funktion müsstest du nun den Hochpunkt berechnen.

Willst du das mal selber versuchen?

....

Ich muss trotzdem sagen, dass ich deine Aufgabe irgendwie komisch finde.
Vor allem die Funktion K(x) sieht meiner Meinung nach blöd aus.
Denn normalerweise würde man doch erwarten, dass die Kosten entweder linear mit der produzierten Stückzahl steigen, wenn nicht vielleicht noch schwächer.
Ich dachte immer es wäre billiger eine große Stückzahl zu produzieren, als eine kleine ...

Mit freundlichen Grüßen,
Andi

Bezug
                
Bezug
Anwendungsaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:22 Fr 26.08.2005
Autor: romanb

HI, vielen dank erstmal für die schnelle hilfe!

also wenn ich die erste Ableitung gleich null setze bekomme ich 7,266 und 0,734 heraus  wenn ich diese werte nun in die zweite ableitung f''(x)= -1,5x+6 einsetze erhalte ich für 7,266 den wert -4,889 und für 0,734 den wert 4,889 . ist jetzt das Maximum 0,734/4,889 ??

Roman

Bezug
                        
Bezug
Anwendungsaufgabe: Bedingung für Maximum
Status: (Antwort) fertig Status 
Datum: 17:53 Fr 26.08.2005
Autor: leduart

Hallo Roman
>  
> also wenn ich die erste Ableitung gleich null setze bekomme
> ich 7,266 und 0,734 heraus  wenn ich diese werte nun in die
> zweite ableitung f''(x)= -1,5x+6 einsetze erhalte ich für
> 7,266 den wert -4,889 und für 0,734 den wert 4,889 . ist
> jetzt das Maximum 0,734/4,889 ??

leider falsch! (die Ableitungen und rechnungen dazu sind richtig)
1. Wenn ein Maximum vorliegen soll muss die 2. Ableitung negativ sein!
(wenn man das vergisst kann man es schnell mit [mm] y1=x^{2} [/mm] und [mm] y2=-x^{2} [/mm] ausprobieren y1'=2x bzw. y2'=-2x also Extrema bei x=0 2. Ableitung y1''=2 und dass y1 bei x=0 ein Min. hat siehst du ja wohl, y2''=-2 und y2 hat bei 0 ein Max.)
Der Wert der zweiten Ableitung spielt keine Rolle, insbesondere hat er nichts mit dem Wert der Funktion G(x) bei x=7,266 zu tun. Um den Wert (die Höhe) des Max zu berechnen must du dein x in G(x) einsetzen. Der maximale Punkt ist also 7,266/G(7,266) .
Alles klar?
Gruss leduart

Bezug
                                
Bezug
Anwendungsaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:30 Fr 26.08.2005
Autor: romanb

also in diesem fall -4,889 richtig??

Roman

Bezug
                                        
Bezug
Anwendungsaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:37 Fr 26.08.2005
Autor: romanb

sorry war mal wieder zu schnell und hab den text nur überflogen abe rich denke ich weis was gemeint ist!! vielen dank nochmal

Roman

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de