www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Anwendungsaufgabe Integrale
Anwendungsaufgabe Integrale < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anwendungsaufgabe Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:23 Di 05.02.2008
Autor: bOernY

Aufgabe
Das nebenstehende Diagramm zeigt, wie die Geschwindigkeit eines Fahrzeugs von der Zeit abhängt; der zugehörige Funktionsterm für 0<t<10 ist
[mm]v(t)=7t * e^{-0,1t}[/mm]
Dabei bezeichnet v die Maßzahl der in Meter pro Sekunde gemessenen Geschwindigkeit, t die Maßzahl der in Sekunden gemessenen Zeit. Der Inhalt der Fläche zwischen dem Graphen, der t-Achse und der Geraden [mm]t=t_0[/mm] entspricht dem während der ersten [mm]t_0[/mm] Sekunden zurückgelegten Weg in Metern.

a) Berechnen Sie den Weg den das Fahrzeug in den ersten 10 Sekunden zurücklegt.
b) Ab dem Zeitpunkt [mm]t=10[/mm] wird das Fahrzeug bis zum Stillstand abgebremst. Dabei wird die Abhängigkeit der Geschwindigkeit von der Zeit durch eine lineare Funktion beschrieben.
Ermitteln Sie die Steigung dieser Funktion, wenn der Bremsweg 122,5 Meter beträgt.

Also Aufgabenteil a war kein Problem für mich - den habe ich gelöst und muss von euch nicht beachtet werden.

Das Problem liegt bei Aufgabenteil b.
Also ich habe die Idee das mit so ansetzen könnte:

[mm] \int_{10}^{p} {mx+b}\, [/mm] dx = 122,5

Dabei wüsste man noch, dass [mm]p[/mm] die Nullstelle von [mm]y=mx + b[/mm] sein muss, die dementsprechend [mm]\bruch{-b}{m}[/mm] wäre.

Außerdem gibt es einen gemeinsamen Punkt von [mm]v(t)[/mm] und [mm]y[/mm], nämlich [mm]v(10)[/mm].
Ausgerechnet bekommt man dann also [mm]v(10)=70e^{-1}[/mm]
Doch wie komme ich denn jetzt zu m oder b?
Ich habe zwar einige Informationen, allerdings bin ich noch zu keinem Ergebnis gekommen.

Danke im vorraus!

        
Bezug
Anwendungsaufgabe Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 19:14 Di 05.02.2008
Autor: tobbi

Hallo bOernY,

zunächst einmal: deine Idee scheint zwar richtig, aber man kann auch mit Starfightern auf Spatzen schießen, um das mal so auszudrücken!!

Du hast während des Bremsprozesses einen linearverlaufenden Graphen also eine recht simple Fläche, um nicht zusagen: ein Dreieck. Nun sicherlich kann man den Flächeninhalt (also die zurückgelegte Strecke) mittels eines Integrals bestimmen, bei einer so einfachen Figur ist das allerdings unnötig! (und macht die Sache hier nur unnötig schwierig)

Bekannt sind ist [mm] v_{bremsanfang}=70\cdot e^{-1} \approx [/mm] 25,75; ferner [mm] v_{bremsende}=0, [/mm] sowie die Strecke s=122,5.

Da gilt [mm] s=A_{Dreieck}=\bruch{1}{2}(y_{bremsanfang}-y_{bremsende})\cdot [/mm] t   mit t:= während des Bremsens vergehende Zeit lässt sich t direkt ermitteln.

Du kennst dann sowohl die Zeit- als auch die Geschwindigkeitsdifferenz, brauchst also nur noch........

Schöne Grüße
Tobbi

Bezug
                
Bezug
Anwendungsaufgabe Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:28 Di 05.02.2008
Autor: bOernY

Also sei mir nicht böse, aber ich habe Physik nach der 10 abgewählt und kann mit dem was du mir sagst zwar rein sachlich etwas anfangen nur krieg ich es grad garnicht in einen Zusammenhang um eine Rechnung zu erstellen.

Bezug
                        
Bezug
Anwendungsaufgabe Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 Di 05.02.2008
Autor: Teufel

Hallo!

Willkommen im Club ;)

Das Dreieck wird begrenzt durch:

A(10|0), [mm] B(10|\bruch{70}{e}), [/mm] C(a|0), wobei a dann die Nullstelle der linearen Funktion wäre.

Nun weißt du, dass das Dreieck einen Flächeninhalt von 122,5m haben soll. Wie lang muss also dann die Seite sein, die auf der x-Achse liegt?

Da das Dreieck rechtwinklig ist:

[mm] A=\bruch{1}{2}*\bruch{70}{e}*(a-10)=122,5 [/mm]

Damit hast du a raus, deinen Punkt C, und kannst den Anstieg der Geraden durch B und C bestimmen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de