www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Anzahl binärer Operationen
Anzahl binärer Operationen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anzahl binärer Operationen: Korrektur / Tipp
Status: (Frage) beantwortet Status 
Datum: 19:21 So 12.04.2015
Autor: riju

Aufgabe
[mm] M:=\{e,a,b,c\} [/mm] sei eine vierelementige Menge. Bestimmen Sie:
a) Anzahl der binären Operationen auf M,
b) Anzahl der binären Operationen auf M mit neutralen Element e,
c) Anzahl der kommutativen binären Operationen auf M mit neutralen Element e

Meine Lösungen:

a) eine binäre Operation ist eine Abbildung [mm] \alpha:M\times M \to M [/mm]. Somit ist die Anzahl der binären Operationen gleich die Anzahl der o.g. Abbildungen. Also [mm] |M|^{|M \times M|} = |M|^{|M| \* |M|} = 4^{16} [/mm]

Stimmt das?

b) Anzahl: [mm] |M|^{(|M|-1) \* (|M|-1)}=4^{9} [/mm]

Ist das richtig? Ich weiß, aber nicht wie ich das so richtig erklären kann.

c) Da weiß ich leider jetzt nicht so richtig den Ansatz. Vllt kann mir da jemand einen Tipp geben.

Vielen Dank

riju

        
Bezug
Anzahl binärer Operationen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:59 So 12.04.2015
Autor: felixf

Moin!

> [mm]M:=\{e,a,b,c\}[/mm] sei eine vierelementige Menge. Bestimmen
> Sie:
>  a) Anzahl der binären Operationen auf M,
>  b) Anzahl der binären Operationen auf M mit neutralen
> Element e,
>  c) Anzahl der kommutativen binären Operationen auf M mit
> neutralen Element e
>  Meine Lösungen:
>  
> a) eine binäre Operation ist eine Abbildung [mm]\alpha:M\times M \to M [/mm].
> Somit ist die Anzahl der binären Operationen gleich die
> Anzahl der o.g. Abbildungen. Also [mm]|M|^{|M \times M|} = |M|^{|M| \* |M|} = 4^{16}[/mm]
>  
> Stimmt das?

Ja.

> b) Anzahl: [mm]|M|^{(|M|-1) \* (|M|-1)}=4^{9}[/mm]
>  
> Ist das richtig?

Ja.

> Ich weiß, aber nicht wie ich das so richtig erklären kann.

Versuch doch mal zu beschreiben, wie du auf dieses Ergebnis gekommen bist. Das würde uns sehr helfen, dir einen guten Tipp für c) zu geben.

> c) Da weiß ich leider jetzt nicht so richtig den Ansatz.

Wenn [mm] $\alpha [/mm] : M [mm] \times [/mm] M [mm] \to [/mm] M$ kommutativ ist, gilt [mm] $\alpha(a, [/mm] b) = [mm] \alpha(b, [/mm] a)$ für alle $a, b [mm] \in [/mm] M$.

Schreib doch mal für $M = [mm] \{ a, b \}$ [/mm] und $M = [mm] \{ a, b, c \}$ [/mm] auf, wieviele Werte von [mm] $\alpha$ [/mm] durch andere Werte von [mm] $\alpha$ [/mm] bestimmt sind, wenn [mm] $\alpha$ [/mm] kommutativ ist. Damit kommst du vielleicht auf eine gute Idee.

LG Felix



Bezug
                
Bezug
Anzahl binärer Operationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:45 Di 14.04.2015
Autor: riju


> Moin!
>  
> > [mm]M:=\{e,a,b,c\}[/mm] sei eine vierelementige Menge. Bestimmen
> > Sie:
>  >  a) Anzahl der binären Operationen auf M,
>  >  b) Anzahl der binären Operationen auf M mit neutralen
> > Element e,
>  >  c) Anzahl der kommutativen binären Operationen auf M
> mit
> > neutralen Element e
>  >  Meine Lösungen:
>  >  
> > a) eine binäre Operation ist eine Abbildung [mm]\alpha:M\times M \to M [/mm].
> > Somit ist die Anzahl der binären Operationen gleich die
> > Anzahl der o.g. Abbildungen. Also [mm]|M|^{|M \times M|} = |M|^{|M| \* |M|} = 4^{16}[/mm]
>  
> >  

> > Stimmt das?
>  
> Ja.
>  
> > b) Anzahl: [mm]|M|^{(|M|-1) \* (|M|-1)}=4^{9}[/mm]
>  >  
> > Ist das richtig?
>  
> Ja.
>  
> > Ich weiß, aber nicht wie ich das so richtig erklären
> kann.
>  
> Versuch doch mal zu beschreiben, wie du auf dieses Ergebnis
> gekommen bist. Das würde uns sehr helfen, dir einen guten
> Tipp für c) zu geben.

Also wenn ich jetzt die Matrix von Marcel nehme:

[mm]\pmat{(e,e) & (e,a) & (e,b) & (e,c) \\(a,e) & (a,a) & (a,b) & (a,c) \\ (b,e) & (b,a) & (b,b) & (b,c) \\ (c,e) & (c,a) & (c,b) & (c,c)}[/mm]

dann darf ich bei der Anzahl die erste Spalte und erste Zeile nicht berücksichtigen. da ja zum beispiel e verknüpft mit a gleich a ist.
Somit habe ich nur noch 9 Matrixeinträge zu berücksichtigen.
Ist das so richtig?

>  
> > c) Da weiß ich leider jetzt nicht so richtig den Ansatz.
>
> Wenn [mm]\alpha : M \times M \to M[/mm] kommutativ ist, gilt
> [mm]\alpha(a, b) = \alpha(b, a)[/mm] für alle [mm]a, b \in M[/mm].
>  
> Schreib doch mal für [mm]M = \{ a, b \}[/mm] und [mm]M = \{ a, b, c \}[/mm]
> auf, wieviele Werte von [mm]\alpha[/mm] durch andere Werte von
> [mm]\alpha[/mm] bestimmt sind, wenn [mm]\alpha[/mm] kommutativ ist. Damit
> kommst du vielleicht auf eine gute Idee.

bei c) habe ich mir jetzt folgendes gedacht.
ich habe jetzt noch die reduzierte Matrix von b), also:
[mm]\pmat{ (a,a) & (a,b) & (a,c) \\ (b,a) & (b,b) & (b,c) \\ (c,a) & (c,b) & (c,c)}[/mm]

Die "reduziere"ich jetzt auf die untere Dreiecksmatrix,
da ja [mm] (b,a)=(a,b) [/mm].
Also habe ich noch:
[mm]\pmat{ (a,a) & & \\ (b,a) & (b,b) & \\ (c,a) & (c,b) & (c,c)}[/mm]

Somit habe ich noch 6 Einträge. Somit wäre die Lösung [mm]4^{6}[/mm].

Richtig?

>  
> LG Felix
>  
>  

Bezug
                        
Bezug
Anzahl binärer Operationen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:15 Di 14.04.2015
Autor: Marcel

Hallo,

> > Moin!
>  >  
> > > [mm]M:=\{e,a,b,c\}[/mm] sei eine vierelementige Menge. Bestimmen
> > > Sie:
>  >  >  a) Anzahl der binären Operationen auf M,
>  >  >  b) Anzahl der binären Operationen auf M mit
> neutralen
> > > Element e,
>  >  >  c) Anzahl der kommutativen binären Operationen auf
> M
> > mit
> > > neutralen Element e
>  >  >  Meine Lösungen:
>  >  >  
> > > a) eine binäre Operation ist eine Abbildung [mm]\alpha:M\times M \to M [/mm].
> > > Somit ist die Anzahl der binären Operationen gleich die
> > > Anzahl der o.g. Abbildungen. Also [mm]|M|^{|M \times M|} = |M|^{|M| \* |M|} = 4^{16}[/mm]
>  
> >  

> > >  

> > > Stimmt das?
>  >  
> > Ja.
>  >  
> > > b) Anzahl: [mm]|M|^{(|M|-1) \* (|M|-1)}=4^{9}[/mm]
>  >  >  
> > > Ist das richtig?
>  >  
> > Ja.
>  >  
> > > Ich weiß, aber nicht wie ich das so richtig erklären
> > kann.
>  >  
> > Versuch doch mal zu beschreiben, wie du auf dieses Ergebnis
> > gekommen bist. Das würde uns sehr helfen, dir einen guten
> > Tipp für c) zu geben.
>  
> Also wenn ich jetzt die Matrix von Marcel nehme:
>  
> [mm]\pmat{(e,e) & (e,a) & (e,b) & (e,c) \\(a,e) & (a,a) & (a,b) & (a,c) \\ (b,e) & (b,a) & (b,b) & (b,c) \\ (c,e) & (c,a) & (c,b) & (c,c)}[/mm]
>  
> dann darf ich bei der Anzahl die erste Spalte und erste
> Zeile nicht berücksichtigen. da ja zum beispiel e
> verknüpft mit a gleich a ist.
>  Somit habe ich nur noch 9 Matrixeinträge zu
> berücksichtigen.
> Ist das so richtig?

so ist es! [ok]

> >  

> > > c) Da weiß ich leider jetzt nicht so richtig den Ansatz.
> >
> > Wenn [mm]\alpha : M \times M \to M[/mm] kommutativ ist, gilt
> > [mm]\alpha(a, b) = \alpha(b, a)[/mm] für alle [mm]a, b \in M[/mm].
>  >  
> > Schreib doch mal für [mm]M = \{ a, b \}[/mm] und [mm]M = \{ a, b, c \}[/mm]
> > auf, wieviele Werte von [mm]\alpha[/mm] durch andere Werte von
> > [mm]\alpha[/mm] bestimmt sind, wenn [mm]\alpha[/mm] kommutativ ist. Damit
> > kommst du vielleicht auf eine gute Idee.
>  
> bei c) habe ich mir jetzt folgendes gedacht.
>  ich habe jetzt noch die reduzierte Matrix von b), also:
>  [mm]\pmat{ (a,a) & (a,b) & (a,c) \\ (b,a) & (b,b) & (b,c) \\ (c,a) & (c,b) & (c,c)}[/mm]
>  
> Die "reduziere"ich jetzt auf die untere Dreiecksmatrix,

Ich hätte die obere genommen, aber das ist ja egal!

>  da ja [mm](b,a)=(a,b) [/mm].
>  Also habe ich noch:
>  [mm]\pmat{ (a,a) & & \\ (b,a) & (b,b) & \\ (c,a) & (c,b) & (c,c)}[/mm]
>  
> Somit habe ich noch 6 Einträge. Somit wäre die Lösung
> [mm]4^{6}[/mm].
>  
> Richtig?

Sehr schön! [ok]

Gruß,
  Marcel

Bezug
        
Bezug
Anzahl binärer Operationen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:37 So 12.04.2015
Autor: Marcel

Hallo,

> [mm]M:=\{e,a,b,c\}[/mm] sei eine vierelementige Menge. Bestimmen
> Sie:
>  a) Anzahl der binären Operationen auf M,
>  b) Anzahl der binären Operationen auf M mit neutralen
> Element e,
>  c) Anzahl der kommutativen binären Operationen auf M mit
> neutralen Element e
>  Meine Lösungen:
>  
> a) eine binäre Operation ist eine Abbildung [mm]\alpha:M\times M \to M [/mm].
> Somit ist die Anzahl der binären Operationen gleich die
> Anzahl der o.g. Abbildungen. Also [mm]|M|^{|M \times M|} = |M|^{|M| \* |M|} = 4^{16}[/mm]
>  
> Stimmt das?
>  
> b) Anzahl: [mm]|M|^{(|M|-1) \* (|M|-1)}=4^{9}[/mm]
>  
> Ist das richtig? Ich weiß, aber nicht wie ich das so
> richtig erklären kann.
>  
> c) Da weiß ich leider jetzt nicht so richtig den Ansatz.
> Vllt kann mir da jemand einen Tipp geben.

um den Tipp von Felix vielleicht ein wenig deutlicher zu machen:
Ich schreibe mal den Definitionsbereich einer Funktion [mm] $\alpha$ [/mm] der Aufgabenstellung
aus a) als "Matrix":

    [mm] $\pmat{(e,e) & (e,a) & (e,b) & (e,c) \\(a,e) & (a,a) & (a,b) & (a,c) \\ (b,e) & (b,a) & (b,b) & (b,c) \\ (c,e) & (c,a) & (c,b) & (c,c)}$ [/mm]

Für alle diese Paare musst Du "einen Zielwert" festlegen (einen pro Paar),
um eine Abbildung $M [mm] \times [/mm] M [mm] \to [/mm] M$ eindeutig zu definieren - Dein Ergebnis
bekommst Du auch raus, wenn Du Dir klarmachst, dass es für jedes solche
Paar hier [mm] $|M|=4\,$ [/mm] "Zielwertmöglichkeiten" gibt, insgesamt also

    [mm] $4^{\text{Anzahl der Matrixeinträge}}=4^{16}$ [/mm]

Bei der Aufgabe c) kannst Du diese Matrix "reduzieren" zu einer (oberen oder
unteren) ...ksmatrix...

Edit: Ich habe dabei allerdings gerade übersehen, dass ja hier auch e neutrales
Element sein soll. Das passt also nur zu "Wie viele kommutative binäre
Operationen auf M gibt es?"
Für c) könntest Du aber analog mit der Modifikation aus b) vorgehen...


Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de