www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Anzahl der positiven Teiler
Anzahl der positiven Teiler < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anzahl der positiven Teiler: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:47 Di 02.09.2008
Autor: froileinkokosnuss

Aufgabe
n hat 2 verschiedene Primteiler. [mm] tau(n^2) [/mm] = 81.
Berechne [mm] tau(n^3). [/mm]

ich habe zunächst n als primfaktorzerlegung dargestellt und dann benutzt dass [mm] tau(n^2)= (2alpha_1(n) [/mm] + 1) mal [mm] (2alpha_2(n) [/mm] + 1) ist (also als produkt dargestellt). ich hab das dann mit 81 gleich gesetzt und versucht diese formel auf die form für [mm] tau(n^3) [/mm] zu bringen, d.h. auf [mm] (3alpha_1(n) [/mm] + 1) mal [mm] (3alpha_2(n) [/mm] + 1) . Das hat aber irgendwie nicht funktioniert.

ich komme leider mit den mathesymbolen hier nicht klar. ich hoffe man versteht trotzdem was ich meine.... sorry! ach, und tau ist die funktion, die die Anzahl der positiven teiler angibt.

kann mir irgendjemand bei dieser aufgabe weiterhelfen? ein andrer ansatz oder so? vieloen dank schon mal im voraus.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Anzahl der positiven Teiler: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 Di 02.09.2008
Autor: Leopold_Gast

Ohne Beschränkung der Allgemeinheit sei [mm]\alpha_1 \leq \alpha_2[/mm].

[mm]\left( 2 \alpha_1 + 1 \right) \left( 2 \alpha_2 + 1 \right) = 81[/mm]

Die beiden Faktoren sind offenbar mindestens 3. Wegen [mm]81 = 3^4[/mm] kommen daher nur die Zerlegungen [mm]3 \cdot 27[/mm] und [mm]9 \cdot 9[/mm] in Frage.

Bezug
                
Bezug
Anzahl der positiven Teiler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:10 Di 02.09.2008
Autor: froileinkokosnuss

ach so, dann kommen für die [mm] \alpha [/mm] also nur in frage:
[mm] \alpha_1 [/mm] = [mm] \alpha_2 [/mm] = 4  oder
[mm] \alpha_1 [/mm] = 1 , [mm] \alpha_2 [/mm] = 13.

das bedeutet, dass gilt: [mm] \tau(n^3) [/mm] = [mm] (3\alpha_1 +1)(3\alpha_2 [/mm] +1) was entweder 13*13 = 169 oder 4*40 = 160 ist.

aber woher weiß ich nun welche lösung die richtige ist? muss ich da noch ins spiel bringen, dass n zwei verschiedene primteiler hat? ich weiß allerdings nicht genau wie?? vielleicht noch ein kleiner tip? danke schon mal!


Bezug
                        
Bezug
Anzahl der positiven Teiler: Antwort
Status: (Antwort) fertig Status 
Datum: 08:56 Mi 03.09.2008
Autor: statler

Guten Morgen und [willkommenmr]

> ach so, dann kommen für die [mm]\alpha[/mm] also nur in frage:
>  [mm]\alpha_1[/mm] = [mm]\alpha_2[/mm] = 4  oder
>  [mm]\alpha_1[/mm] = 1 , [mm]\alpha_2[/mm] = 13.
>  
> das bedeutet, dass gilt: [mm]\tau(n^3)[/mm] = [mm](3\alpha_1 +1)(3\alpha_2[/mm]
> +1) was entweder 13*13 = 169 oder 4*40 = 160 ist.
>  
> aber woher weiß ich nun welche lösung die richtige ist?

Das kannst du mit den vorliegenden Angaben nicht entscheiden. (Nimm einfach n = [mm] 2^{4}*3^{4} [/mm] und n = [mm] 2^{1}*3^{13}.) [/mm]

> muss ich da noch ins spiel bringen, dass n zwei
> verschiedene primteiler hat?

Das hast du schon ins Spiel gebracht.

Gruß aus HH-Harburg
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de