www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Anzahl von Teilen
Anzahl von Teilen < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anzahl von Teilen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:17 Mi 23.11.2011
Autor: DietmarP

Aufgabe
Wie groß ist die Anzahl der echten Teile von 441000? (Anleitung: a ist echter Teiler von b: "Pfeil in beide richtungen" "E"q €N:(b= aq) und (1<a<b). Jede natürliche Zahl kann als Produkt von Primfaktoren geschrieben werden. Jeder Teiler ist dann selbst Produkt aller dieser Primfaktoren mit entsprechenden Potenzen, die auch Null sein können. Hier: [mm] 441000=2^3,3^2,5^3,7^2. [/mm] Finde alle echten Teiler unter Verwendung der Potenzen. dH. jeder Teiler hat die Gestalt 2hoch a, 3 hoch b, 5 hoch c, z hoch d. Auf wie viele Arten können a, b, c und d gewählt werden?

Hallo!

Hätte bei diesen Beispiel Hilfe benötigt. Wie soll ich bei diesen Beispiel vorgehen um zu einer Lösung zu kommen?

Gibt es dafür irgendeinen logischen Rechenweg? Bitte um Hilfe damit ich das Beispiel lösen kann.

Danke im vorhinein.

mfg
DietmarP

        
Bezug
Anzahl von Teilen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:02 Mi 23.11.2011
Autor: fred97


> Wie groß ist die Anzahl der echten Teile von 441000?
> (Anleitung: a ist echter Teiler von b: "Pfeil in beide
> richtungen" "E"q €N:(b= aq) und (1<a<b). Jede natürliche
> Zahl kann als Produkt von Primfaktoren geschrieben werden.
> Jeder Teiler ist dann selbst Produkt aller dieser
> Primfaktoren mit entsprechenden Potenzen, die auch Null
> sein können. Hier: [mm]441000=2^3,3^2,5^3,7^2.[/mm] Finde alle
> echten Teiler unter Verwendung der Potenzen. dH. jeder
> Teiler hat die Gestalt 2hoch a, 3 hoch b, 5 hoch c, z hoch
> d. Auf wie viele Arten können a, b, c und d gewählt
> werden?
>  Hallo!
>  
> Hätte bei diesen Beispiel Hilfe benötigt. Wie soll ich
> bei diesen Beispiel vorgehen um zu einer Lösung zu kommen?

Oben ist doch alles erklärt !

Du hast:

           $ [mm] 441000=2^3*3^2*5^3*7^2. [/mm] $

Du mußt doch nur ablesen !!

Ist 2 ein echter Teiler ? Jawoll !

Ist [mm] 4=2^2 [/mm] ein echter Teiler ? Jawoll !

Ist [mm] 8=2^3 [/mm] ein echter Teiler ? Jawoll !

Haben wir jetzt die 2 abgearbeitet ? Nein ! Denn 6=2*3 ist ebenfalls ein echter Teiler.

Siehst Du nun wo es lang geht ?

FRED

>
> Gibt es dafür irgendeinen logischen Rechenweg? Bitte um
> Hilfe damit ich das Beispiel lösen kann.
>  
> Danke im vorhinein.
>  
> mfg
>  DietmarP


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de