www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentialgleichungen" - Approx. Anfangswertprob.
Approx. Anfangswertprob. < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Approx. Anfangswertprob.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:26 Do 22.01.2009
Autor: Wimme

Aufgabe
Gegeben Sei das AWP
y' = [mm] \frac{1}{(x+1)cos(y)} [/mm] mit x [mm] \in (0,\frac{3}{4}) [/mm] und y(0)=0

a) Approximieren sie y(0.5)
mit dem expliziten Eulerverfahren (Schrittweite 1/8), dem verbesserten Eulerverfahren (Schrittweite 1/8) und dem klassischen Runge-Kutta-Verfahren (Schrittweite 1/4).

b) Bestimmen Sie eine Näherung für y(0.5) indem Sie das implizite Eulerverfahren der Schrittweite h=0.5 anwenden. Welche Art von Problem müssen Sie lösen? Wie gehen sie vor? Beweisen sie, dass ihr Verfahren gegen eine eindeutige Lösung konvergiert. Berechnen Sie vier Schritte ihres verfahrens.

Hallo!

Eigentlich dreht sich meine Frage um Teilaufgabe b). a) glaube ich soweit ganz gut gelöst zu haben.
Hier verwundert mich bereits, dass ich das implizite Eulerverfahren nicht in unserem Skript finde, aber ich denke mal, dass auf Wikipedia in diesem Fall Verlass ist: http://de.wikipedia.org/wiki/Implizites_Euler-Verfahren

Wende ich das Verfahren an, lande ich unweigerlich bei
[mm] y_1 [/mm] = 0.5 [mm] \cdot \frac{1}{1.5 \cdot cos(y_1) } \Leftrightarrow y_1 \cdot cos(y_1) [/mm] = [mm] \frac{1}{3} [/mm]

Einer Gleichung, die ich so ohne weiteres nicht zu lösen im Stande bin.
Eventuell meinen die dads ja mit dem Problem, welches sie in der Aufgabenstellung ansprechen.
Ich habe mir überlegt, dass ich die Gleichung mit dem Newton-Verfahren lösen könnte.
Ich habe den Startwert 0 gewählt, weil das halt unser Anfangspunkt ist und lande dann bei y'_4 [mm] \approx [/mm] 0.3556

Meint ihr, die meinen das?
Für die Gleichung gibt es doch gar keine eindeutige Lösung...mein Verfahren konvergiert auch nur eindeutig, wenn ich hinreichend nah am Lösungswert bin, oder?

Ich habe das Gefühl etwas übersehen zu haben..

Danke für eure Hilfe!
Wimme


        
Bezug
Approx. Anfangswertprob.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 So 25.01.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de