www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Approximation
Approximation < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Approximation: Approximation von e "ohne Tasc
Status: (Frage) beantwortet Status 
Datum: 21:09 Di 11.12.2007
Autor: Mirage.Mirror

Aufgabe
Approximation von e "ohne Taschenrechner"

Bestimmen Sie eine Zahl a [mm] \in \IR [/mm] mit

|a-e| < 0.5  * 10^-3

wobei

e=exp(1)= [mm] \summe_{k=0}^{\infty} \bruch{1}{k!} [/mm]



Hallo.
Wenn mir jemand sagen kann, wie ich hier vorgehen muss würde ich mich sehr freuen. Ich hab leider irgendwie keine Ansatzidee, was ich hier tun muss. Natürlich hätte ich normalerweise einfach alles in den Taschenrechner eingegeben, aber so kommt es mir vor, als müss eich eine Formel auflösen, also

[mm] |a-\summe_{k=0}^{\infty} \bruch{1}{k!}| [/mm] <  0.5  * 10^-3.
Jedoch komme ich nicht so recht weiter bei der Auflösung, wegen der Summe, von der ich zwar das Ergebnis weiß (e eben) aber mit diesem darf ich ja nicht rechnen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Approximation: Antwort
Status: (Antwort) fertig Status 
Datum: 02:35 Mi 12.12.2007
Autor: Zneques

Hallo,

Ich denke mal, du sollst e mit der Reihe ausrechnen. (+- diesem Fehler)
D.h.
[mm] a_{0}=1, a_{1}=1+1=2, a_{2}=1+1+\bruch{1}{2}=2,5, a_{3}=1+1+\bruch{1}{2}+\bruch{1}{6}=2,6\overline{6} [/mm]
u.s.w.

Das Problem ist nun zu wissen wann die Ungleichung erfüllt ist und man aufhören darf.
|a-e|=| [mm] \summe_{k=0}^{n} \bruch{1}{k!}-\summe_{k=0}^{\infty} \bruch{1}{k!} [/mm] |=| [mm] \summe_{k=n+1}^{\infty} \bruch{1}{k!} [/mm] |< 0.5  * 10^-3
Man könnte die einzelnen Summanden durch [mm] \bruch{1}{2^{k-1}}\ge\bruch{1}{k!} [/mm] abschätzen.
Für die Summe würde das [mm] <\bruch{1}{2^{n-1}} [/mm] bedeuten.
Es müsste also bis zum 12. summiert werden.
Die Abschätzung ist recht schlecht. Eigentlich müssten 6 oder 7 reichen. Also entweder etwas an der Abschätzung feilen, oder länger rechnen.

Ciao.

Bezug
                
Bezug
Approximation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 03:37 Mi 12.12.2007
Autor: Mirage.Mirror

Hm, okay, ich habe jetzt verstanden, was genau verlangt ist, aber noch nicht so ganz, wie genau das mit der Abschätzung geht und wie du das meinst mit "bis zum 12. summiert".

Und, ich weiß nicht, ob ich auf dem Schlauch stehe, aber bekomme ich so dann nicht nur, für welches n die Ungleichung stimmt, nicht aber a?

Bezug
                        
Bezug
Approximation: Antwort
Status: (Antwort) fertig Status 
Datum: 11:52 Mi 12.12.2007
Autor: Zneques

a wird doch mit der Summe  [mm] \summe_{k=0}^{\infty} \bruch{1}{k!} [/mm] berechnet. Nur dürfte es dir sehr schwer fallen alle [mm] \infty [/mm] Summanden zu addieren. Daher musst du ein n bestimmen an dem dein [mm] a_{n}=\summe_{k=0}^{n} \bruch{1}{k!} [/mm]  genau genug ist um die Ungleichung zu erfüllen. Die Lösung der Ungleichung sagt dir genau dieses.

[mm] |\summe_{k=n+1}^{\infty} \bruch{1}{k!}|< |\summe_{k=n+1}^{\infty} \bruch{1}{2^{k-1}}|=|\summe_{k=n}^{\infty} \bruch{1}{2^{k}} |=\bruch{1}{2^{n-1}} [/mm] < 0.5  * 10^-3
Jetzt nach n umstellen, und man sieht ab welchen n [mm] a_{n} [/mm] eine Lösung ist.

Ciao.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de