Approximation kleinste Quadrat < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:47 Fr 04.03.2005 | Autor: | Schalko |
Hallo!
Brauche dringend Hilfe für die Beantwortung der bestimmt super einfachen Frage.
Gegeben sind drei Meßpunkte
i xi yi
1 0 0
2 1 1.5
3 2 2.1
und die Gerade P(x) = c1 + c2*x
Und nun sollen c1 und c2 berechnet werden mit Hilfe der Approximation .....
Kann mir jemand helfen?????!!!!!!!
Vielen Dank Alex
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo,
versuch mal :
A = [mm] \pmat{ 1 & x_1 \\ 1 & x_2 \\ 1 & x_3}
[/mm]
c = [mm] \vektor{c_1 \\ c_2}
[/mm]
b = [mm] \vektor{y_1 \\ y_2 \\ y_3}
[/mm]
soll
[mm] $\parallel [/mm] Ac - b [mm] \parallel [/mm] _2 = min$
wird durch die Normalgleichung gelöst:
$A^TAc=A^Tb$
Bei Schwierigkeiten der Anwendung einfach nochmal deinen konkreten
Ansatz schreiben.
gruß
marthasmith
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:26 So 06.03.2005 | Autor: | BAGZZlash |
Na, kommt denn noch was?
|
|
|
|