www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Approximationssatz Primideale
Approximationssatz Primideale < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Approximationssatz Primideale: Verständnis Aussage des Satzes
Status: (Frage) beantwortet Status 
Datum: 15:44 Fr 25.09.2020
Autor: Voxxy

Aufgabe
Sei S eine endliche Menge von Primidealen [mm] \neq [/mm] 0 von R ( R ein Dedekindring). Für alle [mm] x_p \in [/mm] K , [mm] e_p \in \mathbb{Z} [/mm] mit p [mm] \in [/mm] S existiert x [mm] \in [/mm] K mit

i) [mm] v_p (x-x_p) [/mm] = [mm] e_p [/mm] für alle p [mm] \in [/mm] S
ii) [mm] v_q [/mm] (x) [mm] \ge [/mm] 0  für alle Primideale [mm] \neq [/mm] 0 von R mit q [mm] \not\in [/mm] S

Was genau ist die Aussage des Satzes? Ich bin mir relativ unsicher....aber hier mal meine Interpretation:

Der Satz ist ja ähnlich zum chinesischen Restsatz. Gesucht ist hier unser x, für das wir durch den Satz eine Existenzaussage erhalten. Für [mm] e_p \ge [/mm] 0 ist dann dieses x genauso gesucht wie im chinesischen Restsatz.
Wir haben dann:

x [mm] \equiv x_P [/mm] mod [mm] p^{e_p} [/mm] für alle p [mm] \in [/mm] S und [mm] e_p \ge [/mm] 0

Wie ist das mit [mm] e_p [/mm] < 0 ? Und was sagt mir da ggf. die zweite Aussage? Für die Primideale q [mm] \neq [/mm] 0, welche nicht in S liegen, ist vq(x) [mm] \ge [/mm] 0. Kann man das mit i) in Verbindung setzen?

Liebe Grüße
Voxxy

        
Bezug
Approximationssatz Primideale: Antwort
Status: (Antwort) fertig Status 
Datum: 14:06 So 27.09.2020
Autor: statler

Hallo!

> Sei S eine endliche Menge von Primidealen [mm]\neq[/mm] 0 von R ( R
> ein Dedekindring). Für alle [mm]x_p \in[/mm] K , [mm]e_p \in \mathbb{Z}[/mm]
> mit p [mm]\in[/mm] S existiert x [mm]\in[/mm] K mit
>  
> i) [mm]v_p (x-x_p)[/mm] = [mm]e_p[/mm] für alle p [mm]\in[/mm] S
>  ii) [mm]v_q[/mm] (x) [mm]\ge[/mm] 0  für alle Primideale [mm]\neq[/mm] 0 von R mit q
> [mm]\not\in[/mm] S
>  Was genau ist die Aussage des Satzes? Ich bin mir relativ
> unsicher....aber hier mal meine Interpretation:
>  
> Der Satz ist ja ähnlich zum chinesischen Restsatz. Gesucht
> ist hier unser x, für das wir durch den Satz eine
> Existenzaussage erhalten. Für [mm]e_p \ge[/mm] 0 ist dann dieses x
> genauso gesucht wie im chinesischen Restsatz.

Ich vermute, daß du beim Chinesischen Restsatz simultane Kongruenzen nach paarweise teilerfremden Moduln in [mm] \IZ [/mm] löst. Dann sind die [mm] $e_p$'s \ge [/mm] 0. Hier bist du in einem Körper K (hoffentlich der Quotientenkörper von R) unterwegs, das würde beim Restsatz Lösungen in [mm] \IQ [/mm] entsprechen.

>  Wir haben dann:
>  
> x [mm]\equiv x_P[/mm] mod [mm]p^{e_p}[/mm] für alle p [mm]\in[/mm] S und [mm]e_p \ge[/mm] 0
>  
> Wie ist das mit [mm]e_p[/mm] < 0 ?

Die sind genauso zugelassen (s. o.), dafür darfst du dein x in K suchen.

> Und was sagt mir da ggf. die
> zweite Aussage? Für die Primideale q [mm]\neq[/mm] 0, welche nicht
> in S liegen, ist vq(x) [mm]\ge[/mm] 0. Kann man das mit i) in
> Verbindung setzen?

In [mm] \IQ [/mm] würde das heißen, daß in der Primfaktorzerlegung von x die q's nur im Zähler vorkommen.

Gruß aus dem Norden
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de