www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Arbeitsintegral
Arbeitsintegral < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Arbeitsintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:50 Sa 22.11.2008
Autor: BlubbBlubb

Aufgabe
Das ebene Kraftfeld (vektor)F: [mm] \IR^2 [/mm] -> [mm] \IR^2 [/mm] sei durch

(vektor)F(x,y)=(cxy , [mm] x^6y^2) [/mm] gegeben, wobei c > 0. Ein Masseteilchen wird vom Nullpunkt aus längs des Weges [mm] \gamma:[0,1] [/mm] -> [mm] \IR^2, [/mm]

[mm] \gamma(t)=(t [/mm] , [mm] at^b) [/mm]

zur Geraden x = 1 bewegt, wobei a,b > 0. Man bestimme a (als Ausdruck in c) so, dass die verrichtete Arbeit A nicht von b abhängt.

Mein lösungsversuch:


[mm] \integral_0^1 (cat^{b+1} [/mm] , [mm] a^2t^{2b+6}) [/mm] * (1 , [mm] abt^{b-1})dt [/mm] = [mm] \integral_0^1 cat^{b+1} [/mm] + [mm] a^3bt^{3b+5} [/mm] dt = ca * [mm] \integral_0^1 t^{b+1} [/mm] dt + [mm] a^{3b} \integral_0^1 t^{3b+5} [/mm] dt = [mm] \bruch{ca}{b+2}*1^{b+2} [/mm] + [mm] \bruch{a^3b}{3b+6}*1^{3b+6} [/mm]

weiter komm ich nicht.

        
Bezug
Arbeitsintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 16:57 Sa 22.11.2008
Autor: MathePower

Hallo BlubbBlubb,

> Das ebene Kraftfeld (vektor)F: [mm]\IR^2[/mm] -> [mm]\IR^2[/mm] sei durch
>
> (vektor)F(x,y)=(cxy , [mm]x^6y^2)[/mm] gegeben, wobei c > 0. Ein
> Masseteilchen wird vom Nullpunkt aus längs des Weges
> [mm]\gamma:[0,1][/mm] -> [mm]\IR^2,[/mm]
>  
> [mm]\gamma(t)=(t[/mm] , [mm]at^b)[/mm]
>
> zur Geraden x = 1 bewegt, wobei a,b > 0. Man bestimme a
> (als Ausdruck in c) so, dass die verrichtete Arbeit A nicht
> von b abhängt.
>  Mein lösungsversuch:
>  
>
> [mm]\integral_0^1 (cat^{b+1}[/mm] , [mm]a^2t^{2b+6})[/mm] * (1 , [mm]abt^{b-1})dt[/mm]
> = [mm]\integral_0^1 cat^{b+1}[/mm] + [mm]a^3bt^{3b+5}[/mm] dt = ca *
> [mm]\integral_0^1 t^{b+1}[/mm] dt + [mm]a^{3b} \integral_0^1 t^{3b+5}[/mm] dt
> = [mm]\bruch{ca}{b+2}*1^{b+2}[/mm] + [mm]\bruch{a^3b}{3b+6}*1^{3b+6}[/mm]
>  
> weiter komm ich nicht.


Setze [mm]\bruch{ca}{b+2} +\bruch{a^3b}{3b+6}=\bruch{\mu\left(a,c)*\left(b+2\right)}{b+2}=\mu\left(a,c\right)[/mm]

Durch []Koeffizientenvergleich erhältst Du das [mm]\mu\left(a,c\right)[/mm].


Gruß
MathePower

Bezug
                
Bezug
Arbeitsintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:02 So 23.11.2008
Autor: BlubbBlubb

wie ein koeffizientenvergleich funktioniert weiß ich, aber ich hab trotzdem problem den richtigen ansatz zu finden.


> Setze [mm]\bruch{ca}{b+2} +\bruch{a^3b}{3b+6}=\bruch{\mu\left(a,c)*\left(b+2\right)}{b+2}=\mu\left(a,c\right)[/mm]
>  
> Durch []Koeffizientenvergleich
> erhältst Du das [mm]\mu\left(a,c\right)[/mm].
>  
>
> Gruß
>  MathePower


wie siehte denn jetzt der ansatz aus, weil für einen koeffizenten vergleich kann ich doch nicht rechnen:

[mm] \mu\left(a,c\right)*(b+2)=3ca+a^3*b [/mm] , denn ich müßte doch dazu wissen wie die funktion [mm] \mu [/mm] aussieht um die koeffizienten richtig zu bestimmen.





Bezug
                        
Bezug
Arbeitsintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 21:15 So 23.11.2008
Autor: MathePower

Hallo BlubbBlubb,

> wie ein koeffizientenvergleich funktioniert weiß ich, aber
> ich hab trotzdem problem den richtigen ansatz zu finden.
>
>
> > Setze [mm]\bruch{ca}{b+2} +\bruch{a^3b}{3b+6}=\bruch{\mu\left(a,c)*\left(b+2\right)}{b+2}=\mu\left(a,c\right)[/mm]
>  
> >  

> > Durch []Koeffizientenvergleich
> > erhältst Du das [mm]\mu\left(a,c\right)[/mm].
>  >  
> >
> > Gruß
>  >  MathePower
>
>
> wie siehte denn jetzt der ansatz aus, weil für einen
> koeffizenten vergleich kann ich doch nicht rechnen:
>  
> [mm]\mu\left(a,c\right)*(b+2)=3ca+a^3*b[/mm] , denn ich müßte doch
> dazu wissen wie die funktion [mm]\mu[/mm] aussieht um die
> koeffizienten richtig zu bestimmen.
>  


Das musst Du nicht wissen.

Nun vergleiche die Koeffizienten, die jeweils vor dem b stehen, dann erhältst Du diese ominöse Funktion.


>
>
>  


Gruß
MathePower

Bezug
                                
Bezug
Arbeitsintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:28 So 23.11.2008
Autor: BlubbBlubb


> Nun vergleiche die Koeffizienten, die jeweils vor dem b
> stehen, dann erhältst Du diese ominöse Funktion.

>

nagut dann hätte ich

> > [mm]\mu\left(a,c\right)*(b+2)=3ca+a^3*b[/mm]

[mm] \mu [/mm] (a,c) *b + [mm] 2*\mu(a,c)=3ca+a^3*b [/mm]

b: [mm] \mu(a,c)=a^3 [/mm]




Bezug
                                        
Bezug
Arbeitsintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 21:43 So 23.11.2008
Autor: MathePower

Hallo BlubbBlubb,

> > Nun vergleiche die Koeffizienten, die jeweils vor dem b
> > stehen, dann erhältst Du diese ominöse Funktion.
>  >
>  
> nagut dann hätte ich
>
> > > [mm]\mu\left(a,c\right)*(b+2)=3ca+a^3*b[/mm]
> [mm]\mu[/mm] (a,c) *b + [mm]2*\mu(a,c)=3ca+a^3*b[/mm]
>  
> b: [mm]\mu(a,c)=a^3[/mm]
>


[ok]

Wie Du jetzt feststellen wirst, muß auch

[mm]2*\mu\left(a,c\right)=3ca[/mm]

erfüllt sein. damit das Arbeitsintegral von b unabhängig ist.

>
>  


Gruß
MathePower

Bezug
                                                
Bezug
Arbeitsintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:52 So 23.11.2008
Autor: BlubbBlubb

ok habs jetzt nochmal ausführlich:

[mm] \bruch{ca}{b+2} [/mm] + [mm] \bruch{a^3b}{3b+6} [/mm] = [mm] \bruch{ca + \bruch{1}{3}a^3b}{b+2} [/mm]

[mm] \bruch{ca + \bruch{1}{3}a^3b}{b+2} [/mm]  = [mm] \bruch{\mu(a,c)*(b+2)}{b+2} [/mm]

koeffizientenvergleich:

[mm] b^0: [/mm] ca = 2 [mm] \mu(a,c) [/mm]
[mm] b^1: \bruch{a^3}{3} [/mm] = [mm] \mu(a,c) [/mm]

[mm] \bruch{a^3}{3} [/mm] = [mm] \bruch{ca}{2} [/mm]

a = [mm] \wurzel{\bruch{3c}{2}} [/mm]

a eingesetzt in [mm] b^1: [/mm]

A = [mm] \mu(c) [/mm] = [mm] \bruch{1}{3} [/mm] * [mm] \wurzel{\bruch{3c}{2}}^3 [/mm]


ist die aufgabenstellung so komplett berücksichtigt und richtig gelöst?

Bezug
                                                        
Bezug
Arbeitsintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 23:14 So 23.11.2008
Autor: MathePower

Hallo BlubbBlubb,

> ok habs jetzt nochmal ausführlich:
>  
> [mm]\bruch{ca}{b+2}[/mm] + [mm]\bruch{a^3b}{3b+6}[/mm] = [mm]\bruch{ca + \bruch{1}{3}a^3b}{b+2}[/mm]
>
> [mm]\bruch{ca + \bruch{1}{3}a^3b}{b+2}[/mm]  =
> [mm]\bruch{\mu(a,c)*(b+2)}{b+2}[/mm]
>  
> koeffizientenvergleich:
>  
> [mm]b^0:[/mm] ca = 2 [mm]\mu(a,c)[/mm]
>  [mm]b^1: \bruch{a^3}{3}[/mm] = [mm]\mu(a,c)[/mm]
>
> [mm]\bruch{a^3}{3}[/mm] = [mm]\bruch{ca}{2}[/mm]
>
> a = [mm]\wurzel{\bruch{3c}{2}}[/mm]
>  
> a eingesetzt in [mm]b^1:[/mm]
>
> A = [mm]\mu(c)[/mm] = [mm]\bruch{1}{3}[/mm] * [mm]\wurzel{\bruch{3c}{2}}^3[/mm]
>
>
> ist die aufgabenstellung so komplett berücksichtigt und
> richtig gelöst?


Ja, alles richtig. [ok]


Gruß
MathePower

Bezug
                                                                
Bezug
Arbeitsintegral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:19 So 23.11.2008
Autor: BlubbBlubb

ja super danke ^^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de