www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Argument einer komplexen Zahl
Argument einer komplexen Zahl < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Argument einer komplexen Zahl: Erklärung
Status: (Frage) beantwortet Status 
Datum: 18:04 Mo 04.09.2006
Autor: DrRobotnik

Hallo,

ich komm' irgendwie nicht auf die trigonomische Form von komplexen Zahlen klar. Mein Problem ist das Argument einer kompl. Zahl, bzw. wie man dieses errechnet.
Wegen [mm]tan \varphi = \bruch{b}{a}[/mm] gilt ja [mm]\varphi = arctan \bruch{b}{a}[/mm]. Nun weiß ich aber nicht, wie das mit den Quadranten läuft. Wieso ist z.B. bei [mm]z = -2 +2i[/mm] das Argument gleich [mm]arg z = \bruch{3}{4}\pi[/mm]?
Wer erbarmt sich und befreit mich von meiner Verwirrung?

VG
Philipp

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Argument einer komplexen Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 18:06 Mo 04.09.2006
Autor: Alex_Pritzl

Hi,

Bei Wikipedia gibt´s eine schöne Tabelle zu deinem Problem:
[]http://de.wikipedia.org/wiki/Komplexe_Zahl#Umrechnungsformeln

Gruß
Alex

Bezug
                
Bezug
Argument einer komplexen Zahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:18 Mo 04.09.2006
Autor: DrRobotnik

Danke, aber wirklich weiter hilft mir das nicht, weil meine Frage,  warum [mm]arg z = \bruch{3}{4}\pi[/mm] für [mm]z = -2 +2i[/mm] bleibt.
Habe was von [mm]cos \varphi = \bruch{a}{r}[/mm] und [mm]sin \varphi = \bruch{b}{r}[/mm] gelesen, nur komme ich da mit Hilfe der Vorzeichenbetrachtung auch nicht auf [mm]\varphi[/mm].

:-?

Bezug
                        
Bezug
Argument einer komplexen Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 Mo 04.09.2006
Autor: EvenSteven


> Danke, aber wirklich weiter hilft mir das nicht, weil meine
> Frage,  warum [mm]arg z = \bruch{3}{4}\pi[/mm] für [mm]z = -2 +2i[/mm]
> bleibt.

Bei so schönen Zahlen kannst dir das mal in ein x-y-Koordinatensystem einzeichnen, denn [mm]a+i*b=z \in \IC[/mm] kann man mit [mm](a,b) \in \IR^{2}[/mm] identifizieren. Sprich: Zeichne den Punkt (-2,2) in der Ebene ein und schaue, welchen Winkel der Ortsvektor von diesem Punkt mit der positiven x-Achse einschliesst. Das sind 135° oder [mm]\bruch{3 \pi}{4}[/mm]

Gruss

EvenSteven

Bezug
                                
Bezug
Argument einer komplexen Zahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:38 Mo 04.09.2006
Autor: DrRobotnik


> Bei so schönen Zahlen kannst dir das mal in ein
> x-y-Koordinatensystem einzeichnen, denn [mm]a+i*b=z \in \IC[/mm]
> kann man mit [mm](a,b) \in \IR^{2}[/mm] identifizieren. Sprich:
> Zeichne den Punkt (-2,2) in der Ebene ein und schaue,
> welchen Winkel der Ortsvektor von diesem Punkt mit der
> positiven x-Achse einschliesst. Das sind 135° oder [mm]\bruch{3 \pi}{4}[/mm]

Aber rechnerisch muss das doch auch gehen!?


Bezug
                                        
Bezug
Argument einer komplexen Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 18:41 Mo 04.09.2006
Autor: Alex_Pritzl

Ja, siehe mein Link.

Bezug
                                                
Bezug
Argument einer komplexen Zahl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:52 Mo 04.09.2006
Autor: DrRobotnik

Argh, hab mich beim TR vertippt, da kann das ja nix werden. Danke noch mal.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de