www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Arithm. und geom. Mittel
Arithm. und geom. Mittel < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Arithm. und geom. Mittel: Schräger Beweis
Status: (Frage) beantwortet Status 
Datum: 15:33 So 22.01.2006
Autor: DeusRa

Aufgabe
Beweisen Sie die Ungleichung zwischen dem arithmetischen und geometrischen Mittel
$  [mm] \wurzel[n]{a_{1}*...*a_{n}} \le \bruch{a_{1}+...+a_{n}}{n}$ [/mm]
für alle positiven reelen Zahlen [mm] $a_{1},...,a_{n}$. [/mm]
Zeigen Sie, dass Gleichheit nur dann eintreten kann, wenn [mm] $a_{1}=...=a_{n}$ [/mm] ist.
Anleitung:
Führen Sie eine Induktion nach n durch und untersuchen Sie im Induktionsschritt zu gegebenen [mm] $a_{1},...,a_{n}$ [/mm] die Funktion
$f: [mm] \IR \to \IR$ [/mm]
$x [mm] \mapsto [/mm] ( [mm] \bruch{a_{1}+...+a_{n}+x}{n+1} )^{n+1}-a_{1}*...a_{n}*x$ [/mm]
mit den Mittel der Differentialrechnung auf Minima.
Überlegen Sie sich, warum für ein Polynom $p(x)= [mm] \summe_{j=0}^{n} \alpha_{j}*x^{j}$ [/mm] mit [mm] $\alpha_{1},...,\alpha_{1}$ [/mm] und [mm] $\alpha_{n}>0$ [/mm] gilt [mm] $\limes_{n\rightarrow\infty}p(x)= \infty$. [/mm]

So,
also ich bin ein bisschen sauer auf die Aufgabe.
Habe nämlich die Aufgabe zur Hälfte ohne diese Anleitung geschafft.
Jetzt wurde mir gesagt, dass wir die Aufgabe mit der Anleitung beweisen sollen.
Die ist jedoch ein bisschen heftig, da ich nicht genau weiss wie der Induktionsschritt hier eingesetzt werden soll, und was Ableitungen damit zu tun haben sollen ???
Ich bräuchte hier echt mal Hilfe bei.
Danke schön.


        
Bezug
Arithm. und geom. Mittel: Antwort
Status: (Antwort) fertig Status 
Datum: 15:54 So 22.01.2006
Autor: Hanno

Hallo.

Beginne so, wie es in der Aufgabenstellung angedacht wird: leite die gegebene Funktion ab und bestimme $x$ so, dass ihr Wert minimal wird. Setze $x$ dann in die Funktion ein, um den Minimalwert zu erhalten. Diesen Minimalwert minimierst du nochmal durch Variation der [mm] $a_i$ [/mm] unter Verwendung der Induktionsvoraussetzung und betrachtest $x$ für diese speziellen [mm] $a_i$. [/mm]


Liebe Grüße,
Hanno

Bezug
                
Bezug
Arithm. und geom. Mittel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:43 So 22.01.2006
Autor: DeusRa

Also
wenn ich die Funktion ableite, dann kommt bei mir folgendes raus:
$f'(x)=( [mm] \bruch{1}{n+1})^{n+1}-a_{1}*...*a_{n}$ [/mm]
Das heisst, dass $f''(x)=0$, da $f'(x)$ dann ja eine konstante ist, hängt ja nicht mehr von x ab.
Deshalb gibt es doch kein minima. und vor allem keinen minimalen Wert x.


Bezug
                        
Bezug
Arithm. und geom. Mittel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:45 So 22.01.2006
Autor: Hanno

Hallo.

> $ f'(x)=( [mm] \bruch{1}{n+1})^{n+1}-a_{1}\cdot{}...\cdot{}a_{n} [/mm] $

Das ist nicht richtig [notok].

Zum Ableiten von [mm] $x\mapsto \left(\frac{\sum a_i+x}{n+1}\right)^{n+1}-\prod a_i\cdot [/mm] x$ musst du für den ersten Summanden Ketten- und Potenzregel anwenden.

Es ergibt sich dann

$f'(x) = [mm] (n+1)\cdot\frac{1}{n+1}\left(\frac{\sum a_i+x}{n+1}\right)^n [/mm] - [mm] \prod a_i [/mm] = [mm] \left(\frac{\sum a_i+x}{n+1}\right)^n [/mm] - [mm] \prod a_i$. [/mm]


Liebe Grüße,
Hanno

Bezug
                                
Bezug
Arithm. und geom. Mittel: Ist dieses x richtig ? Weiter
Status: (Frage) für Interessierte Status 
Datum: 17:22 So 22.01.2006
Autor: DeusRa

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Ok,
danke schon mal.
Dann lautet also die zweite Ableitung
$f''(x)=\bruch{n}{n+1}*( \bruch{ \summe_{j=0}^{n}a_{j}+x}{n+1})^{n-1}$


Naja,Also muss ich jetzt ein minimales x finden.
Also
$f'(x)=0= (\bruch{\summe_{j=1}^{n}a_{j}+x}{n+1})^{n}- \prod a_i $
$ \gdw x=(n+1)* \wurzel[n]{ \produkt_{j=1}^{n}a_{j}}- \summe_{j=1}^{n}a_{j}$

Also einsetzen in Funktionsgleichung:
$f(x)=(\bruch{ \summe_{j=1}^{n}a_{j}+x}{n+1})^{n+1}- \produkt_{j=1}^{n}a_{j}*x$
\Rightarrow
$f(x)=(\bruch{ \summe_{j=1}^{n}a_{j}+(n+1)* \wurzel[n]{ \produkt_{j=1}^{n}a_{j}}- \summe_{j=1}^{n}a_{j}}{n+1})^{n+1}- \produkt_{j=1}^{n}a_{j}*((n+1)* \wurzel[n]{ \produkt_{j=1}^{n}a_{j}}- \summe_{j=1}^{n}a_{j})=$

$f(x)=(\produkt_{j=1}^{n}a_{j})^{n+1} - \produkt_{j=1}^{n}a_{j} * ((n+1)* \wurzel[n]{ \produkt_{j=1}^{n}a_{j}}- \summe_{j=1}^{n}a_{j}})=$
$f(x)=(\produkt_{j=1}^{n}a_{j})^{n} * \produkt_{j=1}^{n}a_{j}-\produkt_{j=1}^{n}a_{j}*((n+1) * \wurzel[n]{ \produkt_{j=1}^{n}a_{j}}- \summe_{j=1}^{n}a_{j})=$

$f(x)= \produkt_{j=1}^{n}a_{j} * \wurzel[n]{\produkt_{j=1}^{n}a_{j}} - \produkt_{j=1}^{n}a_{j} * n * \wurzel[n]{\produkt_{j=1}^{n}a_{j}} - \produkt_{j=1}^{n}a_{j}+\wurzel[n]{\produkt_{j=1}^{n}a_{j}}+ \produkt_{j=1}^{n}a_{j}* \summe_{j=1}^{n}a_{j}
=$
$ \produkt_{j=1}^{n}a_{j} * ( \summe_{j=1}^{n}a_{j} - n * \wurzel[n]{\produkt_{j=1}^{n}a_{j}})
(Ind.Vor.)
\le \produkt_{j=1}^{n}a_{j} * (\summe_{j=1}^{n}a_{j} - n * \bruch{\summe_{j=1}^{n}a_{j}}{n})
=$
\produkt_{j=1}^{n}a_{j}*(\summe_{j=1}^{n}a_{j}-\summe_{j=1}^{n}a_{j})
$=\produkt_{j=1}^{n}a_{j}*0=0$
$\Rightarrow$
$f(x) \le 0$ $\forall x \in \IR$
\Rightarrow
Da $f(x) \le 0$ und nach Ind.Vor.:
$ \wurzel[n]{a_{1}\cdot{}...\cdot{}a_{n}} \le \bruch{a_{1}+...+a_{n}}{n} $
\Rightarrow $ \wurzel[n]{a_{1}\cdot{}...\cdot{}a_{n}} - \bruch{a_{1}+...+a_{n}}{n} \le  0 $
\Rightarrow
$f(x)=0 : \gwd a_{j}=a_{k}$ $\forall j \not=k$ mit $j,k=1,...,n$
Ich weiss, das ist ne Menge, aber ist da soweit richtig ??
Stimmt das dann also Induktion ?

Bezug
                                        
Bezug
Arithm. und geom. Mittel: Fälligkeit abgelaufen!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:22 Mi 25.01.2006
Autor: PStefan

Hallo DeusRa!

Leider konnte dir keiner, innerhalb der von dir vorgegebenen Zeit antworten. Nun muss ich deine Frage für Interessierte markieren.
Falls ich die Fälligkeit verlängern sollte, schreibe bitte eine private Nachricht an mich!

Vielleicht hast du nächstes Mal mehr Glück. [kleeblatt]

Mit freundlichen Grüßen
PStefan


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de