www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Arithmetik und Algebra
Arithmetik und Algebra < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Arithmetik und Algebra: ggT
Status: (Frage) beantwortet Status 
Datum: 10:58 Fr 23.02.2007
Autor: DaMazen

Aufgabe
Sei p eine Primazahl.
Für alle natürlichen Zahlen a,b, deren größter gemeinsamer Teiler p ist, untersuche man, welche natürlichen Zahlen als größte gemeinsame Teiler von

a) a² und b
b) a³ und b
c) a² und b³

auftreten können.

Die Aufgabe kommt aus einer Staatsprüfung für Lehramt. Leider habe ich keine Idee wie ich an die Aufgabe ran gehen soll bzw wie die Lösung aussehen könnte.
Meione Gedanken bisher: Der ggT kann höchstens so groß sein wie die Wurzel der Zahl. D.H. von a² wohl höchstens a. Leider habe ich nicht mehr rausgefunden und hoffe mir kann einer helfen.

        
Bezug
Arithmetik und Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 12:07 Fr 23.02.2007
Autor: wauwau


> Sei p eine Primazahl.
>  Für alle natürlichen Zahlen a,b, deren größter gemeinsamer
> Teiler p ist, untersuche man, welche natürlichen Zahlen als
> größte gemeinsame Teiler von
>  
> a) a² und b

ggt(a,b)=p [mm] \Rightarrow ggt(a^{2},b)=p [/mm]

>  b) a³ und b

ggt(a,b)=p [mm] \Rightarrow ggt(a^{3},b)=p [/mm]

>  c) a² und b³

ggt(a,b)=p [mm] \Rightarrow ggt(a^{2},b^{3})=p^{2} [/mm]

oder wo sollen denn die anderen gemeinsamen Primfaktoren herkommen??
oder habe ich da was falsch verstanden??

>  
> auftreten können.
>  Die Aufgabe kommt aus einer Staatsprüfung für Lehramt.
> Leider habe ich keine Idee wie ich an die Aufgabe ran gehen
> soll bzw wie die Lösung aussehen könnte.
>  Meione Gedanken bisher: Der ggT kann höchstens so groß
> sein wie die Wurzel der Zahl. D.H. von a² wohl höchstens a.
> Leider habe ich nicht mehr rausgefunden und hoffe mir kann
> einer helfen.


Bezug
                
Bezug
Arithmetik und Algebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:12 Fr 23.02.2007
Autor: andreas

hi

> > a) a² und b
>  
> ggt(a,b)=p [mm]\Rightarrow ggt(a^{2},b)=p[/mm]

ich glaube da gibt es schon noch ein paar weitere möglichkeiten. setze etwa: $a = p$ und $b = [mm] p^2$. [/mm]


grüße
andreas

Bezug
                        
Bezug
Arithmetik und Algebra: Wirklich alles?
Status: (Frage) beantwortet Status 
Datum: 17:45 Fr 23.02.2007
Autor: DaMazen

Ist das wirklich alles? Für die Aufgabe hat man bei der Klausur 30 min Zeit... denke da muss noch mehr hin oder?

Bezug
                                
Bezug
Arithmetik und Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 10:26 Sa 24.02.2007
Autor: wauwau

OK ausführlich:

a = [mm] p^{\alpha}A [/mm]  
b = [mm] p^{\beta}B [/mm]

mit ggt(A,p)=ggt(B,p)=1

da ggt(a,b)=p  gilt: [mm] min(\alpha,\beta)=1 [/mm]

[mm] ggt(a^{n}, b^{m}) [/mm] = [mm] min(n\alpha,m\beta) [/mm]

1) n=2, m=1  [mm] min(2\alpha,\beta) \le [/mm] 2

wobei = 1 wenn [mm] \beta=1 [/mm]  2 sonst

2) n=3, m=1  [mm] min(3\alpha,\beta) \le [/mm] 3

wobei = 1 wenn [mm] \beta=1, [/mm]
     = 2 wenn [mm] \beta=2 [/mm]
     = 3 wenn [mm] \beta \ge [/mm] 3

3) n=2, m=3  2 [mm] \le min(2\alpha,3\beta) \le [/mm] 3

wobei =  2  wenn [mm] \alpha [/mm] = 1
      = 3  wenn [mm] \beta=1 [/mm] und [mm] \alpha [/mm] > 1

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de