www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Arithmetisch-geomet. Mittel
Arithmetisch-geomet. Mittel < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Arithmetisch-geomet. Mittel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:59 Di 17.12.2013
Autor: lord_yggdrasill

Aufgabe
Wir betrachten die beiden Folgen [mm]a_i[/mm] und [mm]b_i[/mm] die ausgehend von zwei reellen Zahlen [mm]a_0:=a>0[/mm] und [mm]b_0:=b>0[/mm] rekursiv definiert sind durch:

[mm] a_{n+1}=\frac{a_n+b_n}{2}[/mm]
[mm]b_{n+1}=(a_n \cdot b_n)^{\frac{1}{2}} [/mm]

Zeige: [mm]a_n - b_n[/mm] ist eine Nullfolge.
Hinweis: Setze in die Rekursionsformeln [mm]a_n-b_n[/mm] ein, dann Induktion.

Ich stehe gerade leicht auf dem Schlauch.

Außerdem ist bereits bekannt, dass [mm]a_n > b_n \forall n \in \IN[/mm]

Was muss ich eigentlich noch zeigen? Nach unten beschränkt durch 0 und monoton fallend?

Ich würd's so versuchen:

Monotonie:

[mm] a_{n+1}-b_{n+1}=\frac{a_n+b_n}{2}-\sqrt{a_n\cdot b_n}<\frac{a_n+a_n}{2}-\sqrt{b_n\cdot b_n}=a_n-b_n[/mm]
Beschränkt:

[mm]A(n):=a_n-b_n>0[/mm]

Induktionsanfang: (n=0)
[mm]a_0-b_0>0 \Leftrightarrow a_0>b_0 [/mm] (ist ja bereits bekannt)

Induktionsvoraussetzung: Es gelte A(n) für ein [mm]n \in \IN[/mm].

Induktionsschluss: ([mm]n \mapsto n+1[/mm]).

zz: [mm]a_{n+1}-b_{n+1}>0 [/mm]

[mm]a_{n+1}-b_{n+1}=\frac{a_n+b_n}{2}-\sqrt{a_n\cdot b_n}=...?[/mm]

Ein kleiner Tipp würde mir vermutlich schon reichen, ich glaube irgendwie, dass ich falsch angefangen habe.

        
Bezug
Arithmetisch-geomet. Mittel: Antwort
Status: (Antwort) fertig Status 
Datum: 01:27 Mi 18.12.2013
Autor: reverend

Hallo Yggdrasil,

die Anrede "Herr" war wohl zu keiner Zeit für die Weltenesche (oder -eibe) gebräuchlich...

Aber darum gehts ja gerade nicht.

> Wir betrachten die beiden Folgen [mm]a_i[/mm] und [mm]b_i[/mm] die ausgehend
> von zwei reellen Zahlen [mm]a_0:=a>0[/mm] und [mm]b_0:=b>0[/mm] rekursiv
> definiert sind durch:
>  
> [mm] a_{n+1}=\frac{a_n+b_n}{2}[/mm]
>  [mm]b_{n+1}=(a_n \cdot b_n)^{\frac{1}{2}} [/mm]
>  
> Zeige: [mm]a_n - b_n[/mm] ist eine Nullfolge.
>  Hinweis: Setze in die Rekursionsformeln [mm]a_n-b_n[/mm] ein, dann
> Induktion.
>  Ich stehe gerade leicht auf dem Schlauch.
>  
> Außerdem ist bereits bekannt, dass [mm]a_n > b_n \forall n \in \IN[/mm]

Ach ja. Woher? (Heißt nicht, dass die Beobachtung falsch ist!)

> Was muss ich eigentlich noch zeigen? Nach unten beschränkt
> durch 0 und monoton fallend?

Das reicht nicht. Dann könnte die Folge z.B. immer noch gegen 0,173 streben.

> Ich würd's so versuchen:
>  
> Monotonie:
>  
> [mm] a_{n+1}-b_{n+1}=\frac{a_n+b_n}{2}-\sqrt{a_n\cdot b_n}<\frac{a_n+a_n}{2}-\sqrt{b_n\cdot b_n}=a_n-b_n[/mm]

Ok.

> Beschränkt:
>  
> [mm]A(n):=a_n-b_n>0[/mm]
>  
> Induktionsanfang: (n=0)
>  [mm]a_0-b_0>0 \Leftrightarrow a_0>b_0[/mm] (ist ja bereits
> bekannt)

Nein. Das hieße a>b, und das ist weder vorausgesetzt noch nötig.
Besser, Du fängst mit [mm] a_1 [/mm] und [mm] b_1 [/mm] an.

> Induktionsvoraussetzung: Es gelte A(n) für ein [mm]n \in \IN[/mm].

Wenn $A(n)$ nicht für eine Variable (einen Zahlenwert), sondern für eine Aussage steht, dann fehlen oben noch Klammern.
  

> Induktionsschluss: ([mm]n \mapsto n+1[/mm]).
>  
> zz: [mm]a_{n+1}-b_{n+1}>0[/mm]
>  
> [mm]a_{n+1}-b_{n+1}=\frac{a_n+b_n}{2}-\sqrt{a_n\cdot b_n}=...?[/mm]
>  
> Ein kleiner Tipp würde mir vermutlich schon reichen, ich
> glaube irgendwie, dass ich falsch angefangen habe.

Du hast nicht gerade die Hilfestellung der Aufgabe ausgenutzt, aber es geht auch so. An der Stelle des Fragezeichens muss hier ein <-Zeichen stehen, und rechts davon musst Du natürlich die Induktionsvoraussetzung verwursten.

Nur, wie gesagt, reicht hier die Kombination aus Monotonie und dem Nachweis von 0 als unterer Schranke nicht.
Du müsstest dann schon zeigen, dass 0 hier das Infimum der Folge ist - was am besten über das [mm] $\varepsilon$-Kriterium [/mm] geht.

Denk nochmal über die Hilfestellung der Aufgabe nach.

Grüße
reverend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de