www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik/Hypothesentests" - Arithmetisches mittel aufgabe
Arithmetisches mittel aufgabe < Statistik/Hypothesen < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Arithmetisches mittel aufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:07 Fr 16.04.2010
Autor: m4rio

Aufgabe
Bestimmen sie jeweils das arithmetische mittel und erläutern sie das ergebnis...


a) x1 = x2 ... =xn = c

b) x1 + c ; x2 + c ; ...; xn + c

c) cx1 ; cx2; ...; cxn



???

hmm, was soll ich hier bitte machen?


MfG

        
Bezug
Arithmetisches mittel aufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:09 Fr 16.04.2010
Autor: ChopSuey

Hi,

> Bestimmen sie jeweils das arithmetische mittel und
> erläutern sie das ergebnis...
>  
>
> a) x1 = x2 ... =xn = c
>  
> b) x1 + c ; x2 + c ; ...; xn + c
>  
> c) cx1 ; cx2; ...; cxn
>  
>
>
> ???
>  hmm, was soll ich hier bitte machen?

Das []arithmetische Mittel bestimmen.


>  
>
> MfG

ChopSuey

Bezug
                
Bezug
Arithmetisches mittel aufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:12 Fr 16.04.2010
Autor: m4rio

jo, aber wie mache ich das ohne werte und wofür steht "c" überhaupt...

Bezug
                        
Bezug
Arithmetisches mittel aufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:17 Fr 16.04.2010
Autor: steppenhahn

Hallo!

> jo, aber wie mache ich das ohne werte und wofür steht "c"
> überhaupt...

c steht für irgendeine Zahl.
Du machst es ohne Werte, indem du einfach stringent die Definition des arithmetischen Mittels hinschreibst:

Ich mach's mal für a):

Du musst [mm] $\frac{1}{n}*\sum_{k=1}^{n}x_{k}$ [/mm] berechnen. Bei dir gilt [mm] $x_{k} [/mm] = c$ für k = 1,...,n (d.h.: Jedes [mm] x_{k} [/mm] hat denselben Wert c). Also einsetzen:

[mm] $\frac{1}{n}*\sum_{k=1}^{n}x_{k} [/mm] = [mm] \frac{1}{n}*\sum_{k=1}^{n}c [/mm] = [mm] \frac{1}{n}*(n*c) [/mm] = c$

Fertig.

Grüße,
Stefan

Bezug
                                
Bezug
Arithmetisches mittel aufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:37 Fr 16.04.2010
Autor: m4rio

ok, verstehe gerade nur nicht, wo bei

$ [mm] \frac{1}{n}\cdot{}\sum_{k=1}^{n}x_{k} [/mm] = [mm] \frac{1}{n}\cdot{}\sum_{k=1}^{n}c [/mm] = [mm] \frac{1}{n}\cdot{}(n\cdot{}c) [/mm] = c $

wieso das "n" am ende wegfällt...



bei b müsste es dann heißen :


[mm] \bruch{1}{n} \summe_{i=1}^{n} \(x+c [/mm]

[mm] \bruch{1}{n} \((n(x+c)) [/mm]

und weiter?

Bezug
                                        
Bezug
Arithmetisches mittel aufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:42 Fr 16.04.2010
Autor: steppenhahn

Hallo!

> ok, verstehe gerade nur nicht, wo bei
>  
> [mm]\frac{1}{n}\cdot{}\sum_{k=1}^{n}x_{k} = \frac{1}{n}\cdot{}\sum_{k=1}^{n}c = \frac{1}{n}\cdot{}(n\cdot{}c) = c[/mm]
>  
> wieso das "n" am ende wegfällt...

???
[mm] \frac{1}{n} [/mm] und n kürzen sich doch weg!


> bei b müsste es dann heißen :
>  
>
> [mm]\bruch{1}{n} \summe_{i=1}^{n} \(x+c[/mm]
>  
> [mm]\bruch{1}{n} \((n(x+c))[/mm]
>  
> und weiter?

Leider nicht "und weiter".
Du hast nicht exakt genug gearbeitet.
Bei b) sind n verschiedene Werte gegeben (die haben nicht alle den Wert "x"!), nur wurden zu allen dieselbe Konstante c addiert.

Es gilt also: Das arithmetische Mittel ist

[mm] $\bruch{1}{n} \summe_{i=1}^{n}(x_{n}+c) [/mm] = ...$

Nun überlege, was du vereinfachen kannst!
Schritt 1: Ziehe die Summe auseinander, so dass in einer Summe nur noch die [mm] x_{i} [/mm] aufsummiert werden und in der anderen nur noch die c's. Die Summe mit den c's kannst du dann wie in a) noch vereinfachen.

Grüße,
Stefan

Bezug
                                                
Bezug
Arithmetisches mittel aufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:56 Fr 16.04.2010
Autor: m4rio

hmmmmmm


ist iwie nicht ganz meine welt...

aufspalten... evtl. so:


[mm] \bruch{1}{n}(n*xn) [/mm] + [mm] \bruch{1}{n}(n*c) [/mm]


glaub kaum dass das korrekt ist...


Bezug
                                                        
Bezug
Arithmetisches mittel aufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 23:01 Fr 16.04.2010
Autor: steppenhahn

Hallo,

> [mm]\bruch{1}{n}(n*xn)[/mm] + [mm]\bruch{1}{n}(n*c)[/mm]

Das ist schon nahe an der Lösung.
Beachte aber: Die [mm] x_{i} [/mm] haben für i = 1,...,n verschiedene Werte! Die linke Summe können wir also nicht vereinfachen!

Es gilt: Arithmetisches Mittel =

[mm] $\frac{1}{n}\sum_{k=1}^{n}(x_{n}+c) [/mm] = [mm] \frac{1}{n}\sum_{k=1}^{n}x_{n}+\frac{1}{n}*\sum_{k=1}^{n}c [/mm] = c + [mm] \frac{1}{n}\sum_{k=1}^{n}x_{n}$. [/mm]

Ist das soweit klar?
Die Summe [mm] \frac{1}{n}\sum_{k=1}^{n}x_{n} [/mm] ist der Mittelwert der Werte [mm] x_{i} [/mm] (i = 1,...,n). Da wir die Werte von den [mm] x_{i} [/mm] nicht kennen (anders als bei a) !), können wir die Summe nicht weiter vereinfachen.

Grüße,
Stefan

Bezug
                                                                
Bezug
Arithmetisches mittel aufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:22 Fr 16.04.2010
Autor: m4rio

hey, so wollt ichs zuerst schreiben :D, kanns nachvollziehen, danke!


dann versuch ich mich mal an aufgabe c:

[mm] \bruch{1}{n} \summe_{i=1}^{n} \((cxn) [/mm]

[mm] (\bruch{1}{n} \summe_{i=1}^{n}c) [/mm] * [mm] (\bruch{1}{n} \summe_{i=1}^{n}xn) [/mm]

[mm] \(c*(\bruch{1}{n} \summe_{i=1}^{n}xn) [/mm]


evtl die richtige richtung?

Bezug
                                                                        
Bezug
Arithmetisches mittel aufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:23 Fr 16.04.2010
Autor: m4rio

hey, so wollt ichs zuerst schreiben :D, kanns nachvollziehen, danke!


dann versuch ich mich mal an aufgabe c:

$ [mm] \bruch{1}{n} \summe_{i=1}^{n} \((cxn) [/mm] $

$ [mm] (\bruch{1}{n} \summe_{i=1}^{n}c) [/mm] $ * $ [mm] (\bruch{1}{n} \summe_{i=1}^{n}xn) [/mm] $

$ [mm] \(c\cdot{}(\bruch{1}{n} \summe_{i=1}^{n}xn) [/mm] $


evtl die richtige richtung?

Bezug
                                                                                
Bezug
Arithmetisches mittel aufgabe: Korrektur
Status: (Antwort) fertig Status 
Datum: 23:30 Fr 16.04.2010
Autor: Loddar

Hallo m4rio!


Die Richtung stimmt, auch wenn Du zwischenzeitlich eine falsche Abbiegung genommen hast ;-) .


> [mm]\bruch{1}{n} \summe_{i=1}^{n} \((cxn)[/mm]
>  
> [mm](\bruch{1}{n} \summe_{i=1}^{n}c)[/mm] * [mm](\bruch{1}{n} \summe_{i=1}^{n}xn)[/mm]

Diese vermeintliche Gleichheit stimmt nicht (Du solltest Dich noch etwas mit dem Summenzeichen vertraut machen ...).

Ausführlicher steht doch da:

[mm] $$\bruch{1}{n}*\summe_{i=1}^{n}(c*x_n) [/mm] \ = \ [mm] \bruch{1}{n}*\left(c*x_1+c*x_2+c*x_3+...+c*x_n\right) [/mm] \ = \ [mm] \bruch{1}{n}*c*\left(x_1+x_2+x_3+...+x_n\right) [/mm] \ = \ [mm] \bruch{1}{n}*c*\summe_{i=1}^{n}x_n [/mm] \ = \ [mm] c*\blue{\bruch{1}{n}*\summe_{i=1}^{n}x_n}$$ [/mm]

  

> [mm]\(c\cdot{}(\bruch{1}{n} \summe_{i=1}^{n}xn)[/mm]

Das Ergebnis stimmt dann!


Gruß
Loddar


Bezug
                                                                                        
Bezug
Arithmetisches mittel aufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:37 Fr 16.04.2010
Autor: m4rio

:)


sieht trotzdem schon gut aus find ich ... thx

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de