www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Assoziativiät
Assoziativiät < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Assoziativiät: Frage zum Beweis
Status: (Frage) beantwortet Status 
Datum: 22:55 Mi 26.10.2005
Autor: wetterfrosch

Hallo Leute,
ich komm bei diesem Beweis nicht weiter und hoffe, es kann mir jemand einen Tipp gehen, wie das weiter geht. Im Prinzip ist es ja ganz einfach, aber ich blick da bei den vielen  [mm] \cap [/mm] und  [mm] \cup [/mm] nicht mehr durch, was ich wie zusammenfassen muss.
Also ich muss zeigen dass (r+s)+t = r + (s+t) wobei r,s,t [mm] \in [/mm] A mit A eine Boolesche Algebra. Dabei gilt r+s := (r [mm] \cap [/mm] s') [mm] \cup [/mm] (r' [mm] \cap [/mm] s) wobei x' das komplement zu x ist.
Ich hab so angefangen:
(r+s)+t = [(r+s) [mm] \cap [/mm] t'] [mm] \cup [/mm] [ (r+s)' [mm] \cap [/mm] t] = [((r [mm] \cap [/mm] s') [mm] \cup [/mm] (r' [mm] \cap [/mm] s)) [mm] \cap [/mm] t'] [mm] \cup [/mm] [((r [mm] \cap [/mm] s') [mm] \cup [/mm] (r' [mm] \cap [/mm] s))' [mm] \cap [/mm] t] = [((r [mm] \cap [/mm] s') [mm] \cap [/mm] (r' [mm] \cap [/mm] s)) [mm] \cup [/mm] t'] [mm] \cup [/mm] [ [mm] ((r\cap [/mm] s')' [mm] \cap [/mm] (r' [mm] \cap [/mm] s)') [mm] \cap [/mm] t] = [((r [mm] \cap [/mm] s') [mm] \cap [/mm] (r' [mm] \cap [/mm] s)) [mm] \cup [/mm] t'] [mm] \cup [/mm] [ (r' [mm] \cup [/mm] s) [mm] \cap [/mm] (r [mm] \cup [/mm] s') [mm] \cap [/mm] t]

Jetzt komm ich nicht mehr weiter. Kann man den Term noch weiter vereinfachen? Hab ich mich auch irgendwo vertan? Ich muss den Ausdruck ja jetzt so umformen, dass ich am Ende [r [mm] \cap [/mm] (s+t)'] [mm] \cup [/mm] [r' [mm] \cap [/mm] (s+t)] erhalte und dann daraus nach der Definiton r +(s+t) folgern kann.

Ich danke für eure Hilfe.
Vg, wetterfrosch

        
Bezug
Assoziativiät: Antwort
Status: (Antwort) fertig Status 
Datum: 10:14 Do 27.10.2005
Autor: Stefan

Hallo!

Das ist ja im Wesentlichen das Assoziativgesetz für das "Exklusive Oder", was man am besten mit einer Wahrheitstafel nachweist.

Wenn du es unbedingt so machen willst wie von dir begonnen, solltest du die Gleichheit

$t [mm] \cap [/mm] ((r [mm] \cap [/mm] s') [mm] \cup [/mm] (r' [mm] \cap [/mm] s))' = ((t [mm] \cap [/mm] r') [mm] \cap [/mm] s') [mm] \cup [/mm] (t [mm] \cap [/mm] r [mm] \cap [/mm] s)$

(die du natürlich erst nachweisen musst)

zweimal im Beweis anwenden (zunächst von links nach rechts und dann später -nach einer Permutation der Buchstaben- von rechts nach links).

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de