www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Atlas Karten
Atlas Karten < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Atlas Karten: Sphäre
Status: (Frage) beantwortet Status 
Datum: 00:16 Mi 09.01.2008
Autor: jumape

Aufgabe
Zeigen Sie, dass die Sphäre [mm] S^{n-1}=\{x\in\IR^n, \parallel x \parallel=1\} [/mm] einen Atlas aus zwei Karten besitzt.  

Ich kann leider nicht so viel mit der Aufgabe anfangen, da ich nicht verstanden habe was ein Atlas und Karten sind.

Eine Karte soll doch das Paar Mannigfaltigkeit M und  f sein, oder?
Und ein Atlas ist die minimale Menge der Karten die die Menge abdecken.
Habe ich das richtig verstanden?

Ich kann das leider nicht in die Praxis umsetzen. Mir fehlt da die Vorstellungen davon. Will ich die Menge in einer anderen Dimension darstellen?
Und wenn ich jetzt zwei Karten habe, heißt das dann dass ich ins zweidimensionale gehe oder heißt das dass ich zwei Funktionen habe die in tiefere Dimensionen gehen?

Vielleicht kann mir ja jemand auf die Sprünge helfen.


        
Bezug
Atlas Karten: Antwort
Status: (Antwort) fertig Status 
Datum: 00:43 Mi 09.01.2008
Autor: rainerS

Hallo!

> Zeigen Sie, dass die Sphäre [mm]S^{n-1}=\{x\in\IR^n, \parallel x \parallel=1\}[/mm]
> einen Atlas aus zwei Karten besitzt.
> Ich kann leider nicht so viel mit der Aufgabe anfangen, da
> ich nicht verstanden habe was ein Atlas und Karten sind.
>
> Eine Karte soll doch das Paar Mannigfaltigkeit M und  f
> sein, oder?
> Und ein Atlas ist die minimale Menge der Karten die die
> Menge abdecken.
> Habe ich das richtig verstanden?

Eine Karte ist eine bijektive stetige (bei differenzierbaren Mannigfaltigkeiten: stetig differenzierbare) Abbildung zwischen einer Teilmenge von M und einer Teilmenge des [mm]\IR^n[/mm]. Ein Atlas ist eine Menge von Karten, sodass alle Teilmengen zusammen die gesamte Mannigfaltigkeit ergeben.

> Ich kann das leider nicht in die Praxis umsetzen. Mir fehlt
> da die Vorstellungen davon. Will ich die Menge in einer
> anderen Dimension darstellen?

Nein. Nimm den Fall n=3, also eine Kugeloberfläche. Die Kugeloberfläche selbst ist zweidimensional, daher werden Abbildungen zwischen der Mannigfaltigkeit und dem [mm]\IR^2[/mm] betrachtet. Eine Karte ist anschaulich genau das, was auch ein Geograph darunter versteht: eine Darstellung eines Teils der Kugeloberfläche auf einer ebenen Fläche. Ein Atlas ist eine Kartensammlung, die die gesamte Kugeloberfläche abdeckt.

Man kann sich eine Karte auch so vorstellen, dass man die Mannigfaltigkeit als Gummituch ansieht und versucht, ein stück dieses Tuches über eine ebene Fläche zu ziehen. Bei einem Luftballon geht das nicht, erst wenn man ein Loch reinpiekt, hat man etwas, was man glattziehen kann.

Ebenso sehen wir bei der Erdkugel, dass es keine Karte gibt, die die gesamte Erdkugel darstellt: eine solche Karte hat immer mindestens eine singuläre Stelle, typisch an den Polen, wo der Längengrad keine Bedeutung hat.

> Und wenn ich jetzt zwei Karten habe, heißt das dann dass
> ich ins zweidimensionale gehe oder heißt das dass ich zwei
> Funktionen habe die in tiefere Dimensionen gehen?

Das heisst, dass du zwei Teilmengen der Kugeloberfläche hast, die beide jeweils auf einen Ausschnitt des [mm]\IR^2[/mm] abgebildet werden. Anschaulich: Nord- und Südhalbkugel. Jede für sich lässt sich als ebene Karte darstellen.

  Viele Grüße
    Rainer

Bezug
                
Bezug
Atlas Karten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:28 Mi 09.01.2008
Autor: jumape

Vielen Dank erstmal für die Erklärung.

Ich muss also bei meiner Aufgabe die Sphäre in ,,Nord- und Südhalbkugel'' aufteilen. Dafür brauche ich eine Vorschrift, richtig?
Also brauche ich zwei Vorschriften, die jeweils einen Teil und gemeinsam alles abdecken. Aber sind die Kugelkoordinaten nicht schon ausreichend?

[mm] r\in [0,\infty) \phi_1\in[0,2\pi] [/mm] und [mm] \phi_2,\phi_3,...\phi_{n-1} \in [0,\pi) [/mm]

[mm] \vektor{x_1\\ x_2\\ x_3\\ .\\.\\.\\x_{n-2}\\x_{n-1}\\x_{n}} [/mm] = [mm] \vektor{rsin\phi_1sin\phi_2.......sin\phi_{n-1}\\rcos\phi_1sin\phi_2......sin\phi_{n-1}\\rcos\phi_2sin\phi_3....sin\phi_{n-1}\\.\\.\\.\\rcos\phi_{n-3}sin\phi_{n-2}sin\phi_{n-1}\\rcos\phi_{n-2}sin\phi_{n-1}\\rcos\phi_{n-1}} [/mm]

Oder brauche ich die Zylinderkoordinaten, weil ich ja nur die Oberfläche berechnen will?

Ich habe die folgende Lösung im Skript gefunden: [mm] \bruch{n\pi^{\bruch{n}{2}}}{\Gamma(1+\bruch{n}{2})} [/mm]

Stimmt das? Ich habe leider keinen Ansatz wie man darauf kommt.

Es wäre nett wenn mir da nochmal jemand helfen könnte.

Bezug
                        
Bezug
Atlas Karten: Antwort
Status: (Antwort) fertig Status 
Datum: 22:13 Mi 09.01.2008
Autor: rainerS

Hallo!

> Ich muss also bei meiner Aufgabe die Sphäre in ,,Nord- und
> Südhalbkugel'' aufteilen. Dafür brauche ich eine
> Vorschrift, richtig?
> Also brauche ich zwei Vorschriften, die jeweils einen Teil
> und gemeinsam alles abdecken. Aber sind die
> Kugelkoordinaten nicht schon ausreichend?

Nein, denn Kugelkoordinaten decken nicht die gesamte Sphäre ab; in mindestens einem Punkt ist die Abbildung nicht bijektiv.

> [mm]r\in [0,\infty) \phi_1\in[0,2\pi][/mm] und [mm]\phi_2,\phi_3,...\phi_{n-1} \in [0,\pi)[/mm]
>  
> [mm]\vektor{x_1\\ x_2\\ x_3\\ .\\.\\.\\x_{n-2}\\x_{n-1}\\x_{n}}[/mm] =[mm]\vektor{rsin\phi_1sin\phi_2.......sin\phi_{n-1}\\rcos\phi_1sin\phi_2......sin\phi_{n-1}\\rcos\phi_2sin\phi_3....sin\phi_{n-1}\\.\\.\\.\\rcos\phi_{n-3}sin\phi_{n-2}sin\phi_{n-1}\\rcos\phi_{n-2}sin\phi_{n-1}\\rcos\phi_{n-1}}[/mm]

In dieser Parametrisierung ist die Abbildung im Punkt mit [mm]\phi_{n-1}=0[/mm], also am Nordpol nicht bijektiv.

Du musst also eine andere wählen, zum Beispiel in der der Südpol nicht Teil der Karte ist.

Ich weiß nicht, wie weit du den Beweis treiben musst; also ob du wirklich ausrechnen musst, wie der Kartenwechsel in Formeln aussieht (das macht keinen Spaß ;-)).

> Oder brauche ich die Zylinderkoordinaten, weil ich ja nur
> die Oberfläche berechnen will?

Wieso willst du die Oberfläche berechnen? Ich dachte, du sollst nur zeigen, dass ein einen Atlas mit zwei Karten gibt und keinen mit nur einer Karte?

Viele Grüße
   Rainer

Bezug
                                
Bezug
Atlas Karten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:14 Fr 11.01.2008
Autor: maddhe

Hi! Ich sitz grad auch dran..

Die Idee hinter der Sache hab ich verstanden, nur haben wir das in der Vorlesung mim [mm] \IR^{3} [/mm] gemacht und da konnte man mit nem Trick die Umkehrfunktion zur Stereographischen Projektion (von Süd- und Nordpol auf die Ebenen [mm] x_3=-1 [/mm] und [mm] x_3=1: \varphi_1\vektor{x_1 \\ x_2 \\ x_3}=\vektor{\bruch{x_1}{1-x_3} \\ \bruch{x_2}{1-x_3} \\ -1} [/mm] bzw. [mm] \varphi_2\vektor{x_1 \\ x_2 \\ x_3}=\vektor{\bruch{x_1}{1+x_3} \\ \bruch{x_2}{1+x_3} \\ 1} [/mm] )
anwenden, sodass man die explizit ausrechnen konnte:  [mm] y_1^{2}+y_2^{2}=\bruch{x_1^{2}+x_2^{2}}{(1-x_3)^{2}}=...=-1+\bruch{2}{1-x_3}\Rightarrow x_3=1-\bruch{2}{1+y_1^{2}+y_2^{2}} [/mm] Das Problem: im [mm] \IR^{n} [/mm] geht das nicht mehr so leicht: [mm] \summe_{i=1}^{n-1}y_i=\bruch{\summe_{i=1}^{n-1}x_i}{1-x_n}=\bruch{1-x_n^{2}}{(1-x_n)^{n}}=...? [/mm]
Und das bekomme ich einfach nicht nach [mm] x_n [/mm] aufgelöst...
Oder muss ich das gar nicht? Der Prof meinte, sei genau dasselbe wie in der Vorlesung, man müsse nur durchhalten und es ausrechnen...

Grüße
M

Bezug
                                        
Bezug
Atlas Karten: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 Fr 11.01.2008
Autor: Blueman

Hi maddhe,

Ich finde es geht schon genauso wie im Fall [mm] S^2. [/mm]
Bei dir haben sich ein paar Fehler eingeschlichen. Es müsste lauten:

[mm] y_{1}^2+...+y_{n-1}^2 [/mm] =  [mm] \bruch{x_{1}^2+....+x_{n-1}^2}{(1-x_{n})^2} [/mm] = [mm] \bruch{1-x_{n}^2}{(1-x_{n})^2} [/mm] = [mm] \bruch{1+x_{n}}{1-x_{n}} [/mm] = [mm] \bruch{2}{1-x_{n}}-1 [/mm]

Dürfte doch stimmen, oder?

Viele Grüße,
Blueman


Bezug
                                                
Bezug
Atlas Karten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:38 Fr 11.01.2008
Autor: maddhe

autsch^^ ja hast recht... dann funktionierts auch:-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de