Atom eines Masses < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Guten Tag
Sei [mm] $(\Omega,\mathcal{F},P)$ [/mm] ein Wahrscheinlichkeitsraum. Ein Atom von $P$ ist eine Menge [mm] $A\in\mathcal{F}$ [/mm] mit $P[A]>0$, so dass für [mm] $B\in\mathcal{F}$, $B\subset [/mm] A$ entweder $P(B)=P(A)$ oder $P(B)=0$. Die Atome können also nicht weiter aufgespalten werden (bis auf Nullmengen). Wir sagen, dass [mm] $(\Omega,\mathcal{F},P)$ [/mm] nicht atomar ist, wenn [mm] $\mathcal{F}$ [/mm] keine Atome von $P$ enthält.
Nun wird folgendes Beispiel gemacht, welches ich nicht verstehe:
Bsp: Jedes Wahrscheinlichkeitsmass auf [mm] $\mathbb{R}$ [/mm] mit einer Dichte $f>0$ auf ganz [mm] $\mathbb{R}$.
[/mm]
Wieso ist dies genau ein Bsp?
Danke für eure Erklärung
Liebe Grüsse
marianne88
|
|
|
|
Hallo!
Nun, für so ein Maß gilt ja
$ [mm] \mu(A)=\int_{A}f d\lambda [/mm] $
Wenn nun A ein Atom ist, dann muss $ [mm] \lambda(A)>0 [/mm] $ sein. Dann gibt es aber eine Teilmenge B, die positives, aber echt kleineres Lesbesguemaß hat. Damit aber gilt auch $ 0< [mm] \mu(B) [/mm] < [mm] \mu(A) [/mm] $
|
|
|
|