www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Aufgabe - Vektoren
Aufgabe - Vektoren < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe - Vektoren: Benötige Tip
Status: (Frage) beantwortet Status 
Datum: 08:46 So 17.12.2006
Autor: KnockDown

Aufgabe
Gegeben seien die folgenden vier Vektoren in [mm] \IR^3 [/mm]

[mm] $\vec{v_1}=\vektor{1 \\ 0 \\ -1}, \vec{v_2}=\vektor{2 \\ 1 \\ 1}, \vec{v_3}=\vektor{-1 \\ 2 \\ 1}, \vec{v_4}=\vektor{2 \\ 1 \\ 3}$ [/mm]

Verifizieren Sie, dass diese vier Vektoren den ganzen Raum [mm] \IR^3 [/mm] aufspannen.

Hi,

ich benötige hier einen Tip um überhaupt mal anfangen zu können. Ich vermute mal dass die Aufgabe was mit dem Span/Linearen Hülle zu tun hat um das zu zeigen oder?


Danke Gruß Thomas

        
Bezug
Aufgabe - Vektoren: Ansatz
Status: (Antwort) fertig Status 
Datum: 10:50 So 17.12.2006
Autor: ron

Hallo Thomas,
die Idee mit dem Spann bzw. lineare Hülle war völlig richtig. Wieviele Vektoren spannen den [mm] \IR^3 [/mm] auf? Es werden drei linear unabhängige Vektoren benötigt. Schreibe die vier Vektoren als Spalten einer Matrix nebeneinander, dann bestimme den Rang dieser Matrix. Kann maximal drei sein, wegen Zeilenrang = Spaltenrang! Sollte dieser Matrixrang kleiner als drei sein, kann der [mm] \IR^3 [/mm] nicht durch die vier gegebenen Vektoren aufgespannt werden.
Die Aufgabenstellung kann auch anders formuliert werden mit dem gleichen Ziel: Wähle aus den vier Vektoren eine Basis des [mm] \IR^3 [/mm] aus.

Hoffe jetzt ist die Aufgabe leichter zu rechnen. Sonst einfach nachfragen.
Gruß
Ron

Bezug
                
Bezug
Aufgabe - Vektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:13 So 17.12.2006
Autor: KnockDown

Hi,

danke für den Tip, ich habe es ausgerechnet und der Rang beträgt 3, also spannen die 4 Vektoren den gesamten [mm] \IR^3 [/mm] auf :-)


Danke für die Hilfe!



Gruß Thomas

Bezug
                        
Bezug
Aufgabe - Vektoren: Zusatz
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:55 Mo 18.12.2006
Autor: ron

Hallo,
noch als Zusatz kann somit gezeigt werden, welcher der vier Vektoren Linearkombination der drei anderen ist und somit kein Basisvektor des [mm] \IR^3 [/mm] ist.
Ron

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de