www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathematik-Wettbewerbe" - Aufgabe #102 (IMOsl),(GEO)
Aufgabe #102 (IMOsl),(GEO) < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe #102 (IMOsl),(GEO): Übungsaufgabe (aktuell)
Status: (Übungsaufgabe) Aktuelle Übungsaufgabe Status (unbefristet) 
Datum: 18:01 Sa 01.10.2005
Autor: Hanno

Hallo an alle!

Es sei ABC ein spitzwinkliges Dreieck. M sei der Mittelpunkt von BC und P der Punkt auf AM mit MB=MP. Ferner sei H der Fußpunkt des Lotes von P auf BC. Die Geraden durch H, die auf PB bzw. PC senkrecht stehen, schneiden AB bzw. AC in Q bzw. R. Zeige, dass BC Tangente in H an den Umkreis von Q,R und H ist.

[Dateianhang nicht öffentlich]


Liebe Grüße,
Hanno

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Aufgabe #102 (IMOsl),(GEO): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:35 Sa 22.10.2005
Autor: moudi

Hallo Zusammen

Ich melde mich seit langer Zeit auch mal wieder und gebe eine Lösung der Aufgabe, die mich eine Weile beschäftigt hat.

Ich bezeichne noch die Schnittpunkte [mm] $Q'=HQ\cap [/mm] BP$ und [mm] $R'=HR\cap [/mm] CP$.

Es ist klar, dass die Strecke BC Tangente an den Kreis durch die Punkte $H,R',P,Q'$ ist, denn $HR'PQ'$ ist ein Rechteck und die Diagonale PQ (auf der der Mittelpunkt dieses Kreises ist) ist senkrecht zu BC.

Wenn ich zeigen kann, dass das Verhältnis $HQ:HQ'=HR:HR'=k$ ist, dann ist der Kreis durch die Punkte H, R, Q das Bild des Kreises durch die Punkte $H,R',P,Q'$ unter einer Streckung mit Streckungszentrum H und Streckungsfaktor k und BC bleibt Tangente an den gestreckten Kreis.

Zu diesem Zweck füre ich die Vektoren [mm] $\vec a=\vec{MB}$ [/mm] und [mm] $\vec b=\vec{MP}$ [/mm] ein. Es gibt dann eine Zahl [mm] $\lambda$ [/mm] mit [mm] $\vec{MA}=\lambda\vec [/mm] b$ und Zahlen x,y,z mit
[mm] $\vec{MH}=x\vec [/mm] a$
[mm] $\vec{HQ}=y(\vec a+\vec [/mm] b)$ (weil HQ parallel ist zu [mm] $\vec a+\vec [/mm] b$) und
[mm] $\vec{QA}=z(\lambda\vec b-\vec [/mm] a)$ (weil [mm] $\vec{BA}=\lambda\vec b-\vec [/mm] a$).

Setzen wir alles ein in die Identität [mm] $\vec{MH}+\vec{HQ}+\vec{QA}+\vec{AM}=\vec [/mm] 0$, so ergibt sich
[mm] $x\vec a+y(\vec a+\vec b)+z(\lambda\vec b-\vec a)-\lambda\vec b=\vec [/mm] 0$ und nach Ordnung
[mm] $(x+y-z)\vec a+(y+\lambda z-\lambda)\vec b=\vec [/mm] 0$.

Weil [mm] $\vec [/mm] a$ und [mm] $\vec [/mm] b$ linear unabhängig sind, muss daher $x+y-z=0$ und [mm] $y+\lambda z-\lambda=0$ [/mm] gelten. Daraus folgt $z=x+y$ und eingesetzt [mm] $y+\lambda(x+y)-\lambda=0$ [/mm] und nach y aufgelöst ergibt sich
[mm] $y=\frac{\lambda(1-x)}{1+\lambda}$. [/mm]

Es sei jetzt [mm] $\vec{HQ'}=y'(\vec a+\vec [/mm] b)$, dann kann ich im oberen Resultat für y einfach [mm] $\lambda=1$ [/mm] setzen, denn dies entspricht genau der Situation für Q, wenn der Punkt A auf den Punkt P fällt. Daher ist
[mm] $y'=\frac{1-x}{2}$. [/mm]

Jetzt ist [mm] $HQ:HQ'=y:y'=\frac{2\lambda}{1+\lambda}$. [/mm] Dieses Resultat ist nur abhängig vom Verhältnis [mm] $MA:MP=\lambda$. [/mm] Deshalb gilt die genau gleiche Rechnung für das Verhältnis [mm] $HR':HR=\frac{2\lambda}{1+\lambda}$. [/mm]

Somit ist die Aufgabe vollständig bewiesen.

mfG Moudi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de