www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Aufgabe zu Ringen
Aufgabe zu Ringen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe zu Ringen: Lösung
Status: (Frage) beantwortet Status 
Datum: 15:48 Mo 29.11.2004
Autor: DerMathematiker

Hallo Ihr, also ich bräuchte mal ne lösung zur folgenden Aufgabe:

Die abelsche Gruppe [mm] (\IZ,+) [/mm] der ganzen Zahlen wurde konstruiert. [mm] \IZ [/mm] wird nun wie folgt mit einer Multiplikation ausgesattet. Man setzt für alle x [mm] \in \IZ. [/mm]

x*0 :=0
x*(y+1):=x*y + x [mm] \forall [/mm] y [mm] \in \IN [/mm] mit der 0
und
x*(-y):=-(x*y) [mm] \forall [/mm] y [mm] \in \IN. [/mm]

Zeigen Sie, dass [mm] (\IZ, [/mm] + ,*) ein kommutativer Ring ist, dessen neutrales Element bzgl. der Multiplikation die 1 ist. Zeigen Sie dazu, dass für beliebige x,y und z [mm] \in \IZ [/mm] die folgenden Aussagen gelten:

0*x=0
x*1 = x
1*x = x
(x+y)*z=xz + yz
(-x)y = -(xy)
xy = yx
x(y+z)=xy + xz
(xy)z = x(yz)

Wir haben schon Ansätze von anderen leuten gesehen, die das ganze über vollständige Induktion gemacht haben, aber x,y und z sind ja [mm] \in \IZ [/mm] deswegen kann man das ja nicht machen, oder? Wenn ja wo ist der Inudktionsanfang zu setzen? Wäre schön, wenn ihr ne Lösung hättet.

MfG Andi

        
Bezug
Aufgabe zu Ringen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:59 Do 02.12.2004
Autor: Marc

Hallo DerMathematiker,

> Die abelsche Gruppe [mm](\IZ,+)[/mm] der ganzen Zahlen wurde
> konstruiert. [mm]\IZ[/mm] wird nun wie folgt mit einer
> Multiplikation ausgesattet. Man setzt für alle x [mm]\in \IZ. [/mm]
>  
>
> x*0 :=0
>  x*(y+1):=x*y + x [mm]\forall[/mm] y [mm]\in \IN[/mm] mit der 0
>  und
> x*(-y):=-(x*y) [mm]\forall[/mm] y [mm]\in \IN. [/mm]

Wohlgemerkt: [mm] $y\in\red{\IN}$, [/mm] s.u.
  

> Zeigen Sie, dass [mm](\IZ,[/mm] + ,*) ein kommutativer Ring ist,
> dessen neutrales Element bzgl. der Multiplikation die 1
> ist. Zeigen Sie dazu, dass für beliebige x,y und z [mm]\in \IZ[/mm]
> die folgenden Aussagen gelten:
>  
> 0*x=0
>  x*1 = x
>  1*x = x
>  (x+y)*z=xz + yz
>  (-x)y = -(xy)
>  xy = yx
>  x(y+z)=xy + xz
>  (xy)z = x(yz)
>  
> Wir haben schon Ansätze von anderen leuten gesehen, die das
> ganze über vollständige Induktion gemacht haben, aber x,y
> und z sind ja [mm]\in \IZ[/mm] deswegen kann man das ja nicht
> machen, oder? Wenn ja wo ist der Inudktionsanfang zu
> setzen? Wäre schön, wenn ihr ne Lösung hättet.

Du mußt dieselben Fallunterscheidungen machen, wie in der Definition.

Zum Beispiel für (x+y)*z=xz + yz:

Per vollständiger Induktion zeigst du nun die Gleichheit für [mm] $z\in\IN_0$ [/mm]

I.A.: $z=0$ ... [ok]
I.V.: Gleichheit gilt für ein [mm] $z\in\IN_0$ [/mm]
I.S.: Gleichheit gilt auch für z+1
[mm] $(x+y)*(z+1)\stackrel{def.}{=}(x+y)*z+(x+y)\stackrel{I.V.}{=}xz+yz+(x+y)=xz+x+yz+y=\stackrel{I.V.}{=}x*(z+1)+y*(z+1)$ [/mm]

Dass die Gleichheit auch für $z<0$ gilt, dürfte jetzt kein Problem mehr sein zu zeigen.

Viele Grüße,
Marc


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de