www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Aufgabe zum Summenzeichen
Aufgabe zum Summenzeichen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe zum Summenzeichen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:59 Di 21.02.2006
Autor: Julia_1

Aufgabe
3. Berechnen Sie möglichst einfach:

a)  [mm] \summe_{i=1}^{30} [/mm] (8 - 6i)

Hallo.

Das man o. g. Aufgabe so:

(8 - [mm] 6\*1) [/mm] + (8 - [mm] 6\*2) [/mm] + (8 - [mm] 6\*3) [/mm] + (8 - [mm] 6\*4) [/mm] + ... + (8 - [mm] 6\*30) [/mm]

lösen kann, weiß ich. Aber wie kann man die Aufgabe "möglichst einfach" lösen, ohne die ganzen einzelnen Summanden von i=1 bis i=30 aufzuschreiben?

  

        
Bezug
Aufgabe zum Summenzeichen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:08 Di 21.02.2006
Autor: nitro1185

Hallo Julia.

Also ich würde das so machen:

[mm] \summe_{i=1}^{30}{(8-6*i)}=\summe_{i=1}^{30}{8}-\summe_{i=1}^{30}{6*i}= [/mm]

[mm] =8*30-6*\summe_{i=1}^{30}{i}=8*30-(1+30)*15=-225!! [/mm]

Die letzte Summe ist eine arithmetische Summe bzw.Reihe

mfg daniel

Bezug
                
Bezug
Aufgabe zum Summenzeichen: nicht ganz...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:56 Di 21.02.2006
Autor: Herby

Hallo Julia,
Hallo Daniel,


das Ergebnis muss lauten -2550, es wurde hier der Faktor 6 verschluckt!



Liebe Grüße
Herby

Bezug
                
Bezug
Aufgabe zum Summenzeichen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:19 Di 21.02.2006
Autor: Julia_1

Bitte für dumme Leute wie mich ein bißchen ausführlicher.

Wieso (1+30): Warum muss man 1 dazu addieren?
[mm] \*15 [/mm]              : Wo kommt der Faktor 15 her?
Faktor 6         : Was muss ich noch mit 6 mal nehmen?



Bezug
                        
Bezug
Aufgabe zum Summenzeichen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:33 Di 21.02.2006
Autor: Herby

Hallo Julia,

> Bitte für dumme Leute wie mich ein bißchen ausführlicher.

na
  

> Wieso (1+30): Warum muss man 1 dazu addieren?
>  [mm]\*15[/mm]              : Wo kommt der Faktor 15 her?
>  Faktor 6         : Was muss ich noch mit 6 mal nehmen?

Der Herr Gauß rechnete, so sagt man, die Summe der ersten 100 Zahlen nach der Formel [mm] \bruch{\red{n}*(\red{n}+1)}{2} [/mm]

Jetzt zu deiner Aufgabe:

8*30 dürfte klar sein, oder?

es bleibt:

[mm] -6*1-6*2-6*3-....-6*30=-6*(1+2+3+...+\red{30})=-6*\bruch{\red{30}*(\red{30}+1)}{2}=-6*\bruch{30}{2}*31=-6*15*31=-2790 [/mm]

ich hab hier die Summe der ersten 30 Zahlen durch die Formel ersetzt

wenn du das mit den 8*30=240 verrechnest, dann erhältst du -2550 als Ergebnis.


verständlich?

wenn nicht, dann frag nochmal nach :-)


Liebe Grüße
Herby

Bezug
                        
Bezug
Aufgabe zum Summenzeichen: Zusatz: Summenformel
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:41 Di 21.02.2006
Autor: Herby

... es ist


[mm] \summe_{i=1}^{n}i=\bruch{n*(n+1)}{2} [/mm]  gilt für alle [mm] n\in\IN [/mm] und kann mit Induktion bewiesen werden.


Liebe Grüße
Herby

Bezug
                        
Bezug
Aufgabe zum Summenzeichen: Zusatz: Herleitung der Formel
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Di 21.02.2006
Autor: Karl_Pech

Hallo [mm]\texttt{Julia\_1}[/mm],


Auch wenn man es im Internet bestimmt irgendwo nachlesen kann, wollte ich nochmal bemerken, daß man diese einfache Summenformel auch ohne Induktion direkt herleiten kann (Bei den Summenformeln für höhere Potenzen ist das wohl nicht mehr so einfach; Induktion ist dann dein Freund).


Angenommen wir wüßten für jedes [mm]n[/mm] der Summe


[mm]\sum_{i=1}^n{i}[/mm]


welcher Wert [mm]k[/mm] für diese Summe rauskommen müßte. Dann gilt doch:


[mm]\sum_{i=1}^n{i} = k[/mm]


Und wenn wir nun auf beiden Seiten mit 2 multiplizieren, ändert sich doch auch nichts, oder?


[mm]2\sum_{i=1}^n{i} = 2k[/mm]


Aber schreiben wir die Summe doch mal aus:


[mm]\sum_{i=1}^n{i} = 1 + \dotsb + n = n + \dotsb + 1[/mm]

[mm]= (n + 1 - \red{1}) + (n + 1 - \red{2}) + \dotsb + n + 1 - \red{n}=\sum_{i=1}^n{(n+1-i)}[/mm]


Und das war letztlich Gauss' wunderschöne Idee, den nun gilt doch:


[mm]2\sum_{i=1}^n{i} = \left(\sum_{i=1}^n{i}\right) + \sum_{i=1}^n{i} = \left(\sum_{i=1}^n{i}\right) + \sum_{i=1}^n{(n+1-i)}[/mm]


Und wegen dem Kommutativgesetz der Addition


[mm]a_1 + b_1 + c_1 + a_2 + b_2 + c_2 = a_1 + a_2 + b_1 + b_2 + c_1 + c_2[/mm]


können wir nun die obigen Summen zusammenfassen:


[mm]\left(\sum_{i=1}^n{i}\right) + \sum_{i=1}^n{(n+1-i)} = \sum_{i=1}^n{(i+n+1-i)} = \sum_{i=1}^n{(n+1)} = \underbrace{(n+1) + \dotsb + (n+1)}_{n\text{ mal}} = n(n+1) = \red{2k}[/mm]


Und jetzt nur noch eine letzte Umformung:


[mm]n(n+1) = 2k \gdw k = \frac{n(n+1)}{2}[/mm]


Das war's.



Viele Grüße
Karl





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de