www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Aufgaben zu Kurvenscharen
Aufgaben zu Kurvenscharen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgaben zu Kurvenscharen: Nachweisen
Status: (Frage) beantwortet Status 
Datum: 15:46 Fr 29.09.2006
Autor: Melli1988

Aufgabe
Weisen Sie nach, dass die x-Koordinaten der Hochpunkte/Tiefpunkte der Funktionen fk (k undgleich 0) nicht vom Parameter k abhängen. (Bsp.: fk(x)= [mm] k*x^3-k*x) [/mm]


Wir haben schon hin und her überlegt und auch einige Ansätze... dennoch fällt uns keine plausible Erklärung für die Frage ein und wollte einfach mal fragen, ob uns hier jemand helfen könnte.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Aufgaben zu Kurvenscharen: Rückfrage
Status: (Antwort) fertig Status 
Datum: 15:52 Fr 29.09.2006
Autor: informix

Hallo Melli und [willkommenmr],
> Weisen Sie nach, dass die x-Koordinaten der
> Hochpunkte/Tiefpunkte der Funktionen fk (k [mm] \ne [/mm] 0)
> nicht vom Parameter k abhängen. (Bsp.: [mm]f_k(x)= k*x^3-k*x)[/mm]
>  
>
> Wir haben schon hin und her überlegt und auch einige
> Ansätze... dennoch fällt uns keine plausible Erklärung für
> die Frage ein und wollte einfach mal fragen, ob uns hier
> jemand helfen könnte.

Dann verrat uns doch mal den einen oder anderen Ansatz, damit wir erkennen können, was Ihr schon könnt (oder können solltet). Nur dann können wir Euch gezielt helfen.

Gruß informix


Bezug
                
Bezug
Aufgaben zu Kurvenscharen: Ansatz
Status: (Frage) beantwortet Status 
Datum: 16:12 Fr 29.09.2006
Autor: Melli1988

Danke für das Willkommen :)

Naja, wir wissen, dass man die Hoch- bzw. Tiefpunkte errechnet indem man die Ableitung mit 0 gleichsetzt, aber nicht, wie man das auf eine allgemeine Form überträgt...

Bezug
                        
Bezug
Aufgaben zu Kurvenscharen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:27 Fr 29.09.2006
Autor: Teufel

Hallo!

Versuche das hier mal genauso. Tu so, als wenn k irgendeine reelle Zahl wäre und zieh das so durch!

Wenn der Hochpunkt nicht von k abhängen soll, muss man später auf Koordinaten kommen, die kein k enthalten.

Und los! :)

Bezug
        
Bezug
Aufgaben zu Kurvenscharen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:26 Fr 29.09.2006
Autor: M.Rex

Hallo nochmal

Du hast ja hier schon den Ansatz gegeben.

Deine Funktion [mm] f_{k}(x)=kx³-kx [/mm] kannst du ja ohne Probleme ableiten (nach x)
Du solltest dann als Ableitung [mm] f_{k}'(x)=3kx²-k [/mm] herausbekommen.
Diese kannst du jetzt gleich Null setzen, um die Extremstellen [mm] x_{e} [/mm] zu berechnen.
Also
[mm] 3kx_{e}²-k=0 [/mm]
[mm] \gdw x_{e_{1;2}}=\pm\wurzel{\bruch{k}{3k}}=\pm\wurzel{\bruch{1}{3}} [/mm] und das ist sicherlich von k unabhängig.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de