www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Aufleitungen
Aufleitungen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufleitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:31 So 13.05.2007
Autor: Engel205

Was sind die Aufleitungen von

1. [mm] nxe^{-nx²} [/mm]

2. [mm] \bruch{1}{1+n(x+1)} [/mm]

????

Bei 1. habe ich raus: [mm] e^{-n²x³} [/mm] Stimmt das?

        
Bezug
Aufleitungen: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 18:05 So 13.05.2007
Autor: Jenni21

Also zu zwei könnte dies die Lösung sein 1/2(1+nx+n)-²

Bezug
        
Bezug
Aufleitungen: Tipps
Status: (Antwort) fertig Status 
Datum: 19:48 So 13.05.2007
Autor: Loddar

Hallo Engel!


Deine Stammfunktion bei der 1. Funktion stimmt nicht. Verwende hier die Substitution $z \ := \ [mm] -n*x^2$ $\Rightarrow$ [/mm]   $z' \ = \ [mm] \bruch{dz}{dx} [/mm] \ = \ -2n*x$ .



Bei der 2. Funktion hilft vielleicht folgende Umformung weiter:

[mm] $f_n(x) [/mm] \ = \ [mm] \bruch{1}{1+n*(x+1)} [/mm] \ = \ [mm] \bruch{1}{1+n*x+n} [/mm]  \ = \ [mm] \bruch{1}{n}*\bruch{n}{n*x + (n+1)}$ [/mm]

Und nun steht im Zähler die Ableitung des Nenners ...


Gruß
Loddar


Bezug
                
Bezug
Aufleitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:00 Mo 14.05.2007
Autor: Engel205

bor mit Substitiution komm ich gar nicht klar....
muss ich danach nochmal substituieren?

Bezug
                        
Bezug
Aufleitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:28 Mo 14.05.2007
Autor: Event_Horizon

Naja, Substitution ist gar nicht sooo schwer. DAs schwierigste ist, eine geeignete zu finden.
Gut, Substitution macht man nicht mal eben blind, man muß schon mal schaun, was genau da passiert. Man darf den Überblick nicht verlieren.





Loddar hat dir ja zu $ [mm] z=-nx^2$ [/mm] geraten.

Das kannst du nach x auflösen und dann in deine Funktion einsetzen.


Allerdings, wenn du integrierst, steht eigentlich noch das dx. Auch das muß zu einem dz werden, und das geht, indem man die Ableitung von z bildet (-> Loddar). Das löst du nach dx auf, als wäre das ein Produkt, und setzt das ebenfalls als Integral ein.

Nun kannst du integrieren, aber da fehlt noch was: Die Grenzen sind ja sowas wie [mm] \integral_{x_1}^{x_2}, [/mm] also auch in "x-Einheiten". Da du aber mit z rechnest, müssen dort die Grenzen auch in "z-Einheiten" stehen. Das ist aber nicht schwer, man steckt die x-Grenzen einfach in $ [mm] z=-nx^2$, [/mm] und erhält die z-Grenzen:

[mm] $z_1=-nx_1^2$ [/mm]

[mm] $z_2=-nx_2^2$ [/mm]

oder auch


[mm] $\integral_{-nx_1^2}^{-nx_1^2}$ [/mm]

Nachdem du also deine Stammfunktion gebildet hast, mußt du DIESE Grenzen benutzen, denn du willst ja x-Werte einsetzen, deine Stammfunktion will aber z-Werte haben.







Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de