www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Auflösbare Gruppe
Auflösbare Gruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Auflösbare Gruppe: Korrektur?
Status: (Frage) beantwortet Status 
Datum: 00:40 So 31.07.2011
Autor: tinakru

Aufgabe
Zeigen sie dass die [mm] S_{4} [/mm] auflösbar ist indem sie eine Normalreihe angeben.

Guten Morgen,

ich habe die Aufgabe eigentlich schon gelöst an der Uni, hätte nur ne klitzekleine :) Frage dazu.

Das Normalteilersymbol habe ich leider in der Liste nicht entdeckt, habe im Folgenden dafür das kleiner zeichen < verwendet.

Wir haben dazu die Normalreihe

{e}< N < V4 < A4 < S4

angegeben mit N = <(12)(34)> und [mm] V_{4} [/mm] ist die Untergruppe mit 4 Elementen.

Meine Frage: Hätte nicht diese Normalreihe auch genügt:

{e}< V4 < A4 < S4

Also ohne N.
Es gilt nämlich [V4 : {e}] = 4 und wir wissen, dass alle Gruppen der Ordnung 4 abelsch sind.

Muss diese Kette immer größtmöglich sein, oder reicht auch die kleinstmöglich, also hauptsache die Restklassengruppen [mm] N_{i} [/mm] / [mm] N_{i+1} [/mm]
sind abelsch.

Danke

LG
Tina

        
Bezug
Auflösbare Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 10:44 So 31.07.2011
Autor: felixf

Moin Tina!

> Zeigen sie dass die [mm]S_{4}[/mm] auflösbar ist indem sie eine
> Normalreihe angeben.
>  
> ich habe die Aufgabe eigentlich schon gelöst an der Uni,
> hätte nur ne klitzekleine :) Frage dazu.
>  
> Das Normalteilersymbol habe ich leider in der Liste nicht
> entdeckt, habe im Folgenden dafür das kleiner zeichen <
> verwendet.
>  
> Wir haben dazu die Normalreihe
>
> {e}< N < V4 < A4 < S4
>
> angegeben mit N = <(12)(34)> und [mm]V_{4}[/mm] ist die Untergruppe
> mit 4 Elementen.
>  
> Meine Frage: Hätte nicht diese Normalreihe auch genügt:
>  
> {e}< V4 < A4 < S4
>
> Also ohne N.

Ja.

>  Es gilt nämlich [V4 : {e}] = 4 und wir wissen, dass alle
> Gruppen der Ordnung 4 abelsch sind.

[ok]

> Muss diese Kette immer größtmöglich sein, oder reicht
> auch die kleinstmöglich, also hauptsache die
> Restklassengruppen [mm]N_{i}[/mm] / [mm]N_{i+1}[/mm]
> sind abelsch.

Es reicht auch die kleinstmoegliche Kette. Manche geben halt gern eine laengstmoegliche Kette an (die dann auch eine Kompositionsreihe ist), also bei aufloesbaren Gruppen laeuft es darauf hinaus dass die Quotienten zyklisch von Primzahlordnung sind. Aber um zu schauen ob die Gruppe aufloesbar ist muss man das nicht.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de