www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Numerik linearer Gleichungssysteme" - Aufwand des Gauß-Verfahrens
Aufwand des Gauß-Verfahrens < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufwand des Gauß-Verfahrens: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:22 Mi 02.02.2011
Autor: loecksche

Guten Morgen alle zusammen!
Bin gerade dabei, mir die L-R-Zerlegung klar zu machen und bin beim Aufwand hängen geblieben. Der wird in meinem Skript mit
Zerlegung: [mm] \bruch{n^{3}}{3}+O(n^{2}) [/mm] multiply adds
Auflösung: [mm] (\bruch{n^{2}}{3}+O(n))\*2 [/mm] = [mm] n^{2}+O(n) [/mm] multiply adds
Meine Frage: Ich habe nicht verstanden, was die beiden Terme aussagen, vor allem wegen des O(...). Könnte mir das jemand bitte erklären?
Ich habe diese Frage auch in keinem anderen Forum gestellt.
Wäre nett und holfreich, von jemandem zu hören!
Grüße
Loecksche

        
Bezug
Aufwand des Gauß-Verfahrens: Antwort
Status: (Antwort) fertig Status 
Datum: 09:58 Do 03.02.2011
Autor: nooschi



den Aufwand misst man ja daran, wieviele Rechenschritte gemacht werden müssen. bei der L-R-Zerlegung hängt das davon ab, wie gross die Matrix ist, die zerlegt werden soll. Dies ist hier wohl eine [mm] $n\times [/mm] n$ Matrix.
Jetzt bei dem Aufwand will man eine grob Abschätzung, es interessiert vor allem, was bei grossen Problemen, also bei riesigen Matrizen (grosse n) passiert. Wenn da zum Beispiel der Aufwand (genau ausgerechnet) [mm] $\frac{1}{3}n^3+23n^2-12n+3445$ [/mm] ist, dann ist [mm] $23n^2-12n+3445$ [/mm] für grosse n eigentlich irrelevant, man kürzt ab mit [mm] $O(n^2)$. [/mm] Damit meint man, dass dies ein Polynom ist, wo die grösste Potenz die vorkommt [mm] n^2 [/mm] ist. Insgesamt schreibt man dann
[mm] $\frac{1}{3}n^3+23n^2-12n+3445=\frac{1}{3}n^3+O(n^2)$ [/mm]

(wir hatten damals sogar nicht einmal die erste Potenz genau ausgeschrieben sondern direkt mit [mm] O(n^3) [/mm] abgekürzt)


Bezug
        
Bezug
Aufwand des Gauß-Verfahrens: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mi 09.02.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de