www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Ausgleichsparabel
Ausgleichsparabel < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ausgleichsparabel: Frage
Status: (Frage) beantwortet Status 
Datum: 17:49 Mo 24.01.2005
Autor: Schorsch81

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Aufgabe:


Ein Auto vollzieht eine Vollbremsung bis zum Stillstand. Während des Bremsvorganges mißt man vier
Mal im Abstand von jeweils einer Sekunde die zurückgelegte Strecke: (1m, 46m, 80m, 109m). Die erste
Messung war zum Zeitpunkt t =0s. Es ist davon auszugehen, daß Meßfehler aufgetreten sind.Wir nehmen
auch an, daß die Galileische Bewegungsformel s(t) =  [mm] s_{0} [/mm] + [mm] v_{0}t [/mm] +  [mm] \bruch{1}{2}a_{0}t^{2}, [/mm] mit (konstanter) Anfangsstrecke
[mm] s_{0}, [/mm] (konstanter) Anfangsgeschwindigkeit [mm] v_{0} [/mm] und konstanter Beschleunigung [mm] a_{0} [/mm] die Situation genau genug
beschreibt. Bestimme zu den obigen Meßwerten gemäß der Methode der besten Approximation die Ausgleichsparabel
s(t). Wie schnell war das Auto zum Zeitpunkt der ersten Messung und wann und wo wird
das Auto voraussichtlich zum Stillstand kommen?


Kann mir vielleicht jemand ein paar Tipps oder die Lösung dazu sagen? Wäre echt nett!
Danke...

        
Bezug
Ausgleichsparabel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:25 Mo 24.01.2005
Autor: FriedrichLaher

Hallo, Schorsch81

ich nehme an, es darf [mm] $s_0 [/mm] = 0$ angenommen werden .

Dann bestimmen wir $v = [mm] v_0, [/mm] a = [mm] a_0$, [/mm] $s(t) = [mm] v*t+\frac{1}{2}a*t^2$ [/mm] so
daß
$S = [mm] \sum _{i=1}^4 [/mm] (s(i) - [mm] x_i)^2$ [/mm] so daß S abhängig von v, a
minimal wird ( Mean Square Method ).

[mm] $\frac{\partial S}{\partial v} [/mm] = [mm] \sum _{i=1}^4 [/mm] 2*(s(i) - [mm] x_i)*t_i$ [/mm]
[mm] $\frac{\partial S}{\partial a} [/mm] = [mm] \sum _{i=1}^4 [/mm] 2*(s(i) - [mm] x_i)*\frac{1}{2}t_i [/mm] ^2$
als omüssen
für v: $2 * [mm] \left( v*(1+4+9+16)+\frac{a}{2}(1+8+27+64) -(1*1+2*46+3*80+4*109\right) [/mm] = 0$ und
für a: $2 * [mm] \left( v*(1+8+27+64)+\frac{a}{2}(1+2^4+3^4+4^4) -(1^2*1+2^2*46+3^2*80+4^2*109)\right) [/mm] = 0$
gelten

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de