www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Logik" - Aussagenlogik
Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aussagenlogik: zwei Formeln äquivalent
Status: (Frage) beantwortet Status 
Datum: 12:05 Di 07.04.2015
Autor: AnnaK1990

Aufgabe
Folgende aussagenlogische Formeln sind äquivalent:
1) X [mm] \vee [/mm] Y [mm] \gdw [/mm] (Z [mm] \to [/mm] X [mm] \wedge [/mm] Y)
2) X [mm] \wedge [/mm] ( Z [mm] \to [/mm] Y)) [mm] \vee (\neg [/mm] X [mm] \wedge [/mm] ( Z [mm] \gdw \neg [/mm] Y))

Hi zusammen,

ich habe hier schnell die Wertetabelle aufgestellt, die Ergebnisse unterscheiden sich aber in einem Punkt... Dann wären die beiden Formeln somit nicht äquivalent?
Wundert mich aber, das ist eine Klausuraufgabe und die Frage ist ja explizit zeigen sie das die beiden Formeln äquivalent sind... Jemand eine Idee?

Grüße

        
Bezug
Aussagenlogik: Antwort
Status: (Antwort) fertig Status 
Datum: 13:09 Di 07.04.2015
Autor: Al-Chwarizmi


> Folgende aussagenlogische Formeln sind äquivalent:
>  1) X [mm]\vee[/mm] Y [mm]\gdw[/mm] (Z [mm]\to[/mm] X [mm]\wedge[/mm] Y)
>  2) X [mm]\wedge[/mm] ( Z [mm]\to[/mm] Y)) [mm]\vee (\neg[/mm] X [mm]\wedge[/mm] ( Z [mm]\gdw \neg[/mm] Y))

>  Hi zusammen,
>  
> ich habe hier schnell die Wertetabelle aufgestellt, die
> Ergebnisse unterscheiden sich aber in einem Punkt... Dann
> wären die beiden Formeln somit nicht äquivalent?
>  Wundert mich aber, das ist eine Klausuraufgabe und die
> Frage ist ja explizit zeigen sie das die beiden Formeln
> äquivalent sind... Jemand eine Idee?
>  
> Grüße


Hallo Anna

ich habe ebenfalls eine Wertetabelle berechnet. Bei mir
stimmt die Äquivalenz (vielleicht war ich beim Aufstellen
nicht ganz so schnell ...).
Um herauszufinden, wo genau etwas nicht passt, müsstest
du also z.B. die Wertetabelle zeigen, oder wenigstens
dasjenige Beispiel, wo du keine Übereinstimmung gefunden
hast. Für Letzteres würde es genügen, dass du die ent-
sprechenden Belegungen von X,Y und Z angibst.

LG ,   Al-Chwarizmi

Bezug
                
Bezug
Aussagenlogik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:35 Di 07.04.2015
Autor: AnnaK1990

Aufgabe
AALSO:
x  y  z    Formel1     Formel2
0  0 0        0              0
0  0 1        1              1
0  1 0        1              1
0  1 1        1              0
1  0 0        1              1
1  0 1        0              1
1  1 0        1              1
1  1 1        1              1

es ist also "verdeht" bei 011 und 101 :/ habe es zweimal gemacht und bin auf das selbe ergebniss gekommen...

Dankee

Bezug
                        
Bezug
Aussagenlogik: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 Di 07.04.2015
Autor: Ladon

Hallo Anna,

beachte:

[mm] \begin{tabular}{c|c|c|c|c|c|c|c|c|c|c|c|c|c} X & Y & Z & \ensuremath{\neg} X & \ensuremath{\neg} Y & X \ensuremath{\vee} Y & Z \ensuremath{\rightarrow} Y & X \ensuremath{\wedge} (Z \ensuremath{\rightarrow} Y) & X \ensuremath{\wedge} Y & Z \ensuremath{\rightarrow} (X \ensuremath{\wedge} Y) & Z \ensuremath{\leftrightarrow \neg} Y & \ensuremath{\neg} X \ensuremath{\wedge} (Z \ensuremath{\leftrightarrow \neg} Y) & Formel 1 & Formel 2 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ \end{tabular} [/mm]

MfG
Ladon

Bezug
                                
Bezug
Aussagenlogik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:55 Di 07.04.2015
Autor: AnnaK1990

Hi,
vielen Dank, habe ein paar mal gebraucht bis ich es gesehen habe... hatte beides mal ganz am ende einfach das Gegenteil geschrieben von dem was ich meinte :D...

Dankööö


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de