www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Austauschsatz von Steinitz
Austauschsatz von Steinitz < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Austauschsatz von Steinitz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:55 Fr 16.12.2011
Autor: s1mn

Aufgabe
Es seien die Vektoren [mm] v_{1} [/mm] = [mm] \vektor{1 \\ 1 \\ 3}, v_{2} [/mm] = [mm] \vektor{1 \\ 0 \\ -1}, v_{3} [/mm] = [mm] \vektor{-1 \\ 1 \\ 2} [/mm]
[mm] w_{1} [/mm] = [mm] \vektor{0 \\ 2 \\ 2}, w_{2} [/mm] = [mm] \vektor{3 \\ 2 \\ -1} [/mm]
aus dem [mm] \IR^{3} [/mm] (aufgefasst als [mm] \IR [/mm] Vektorraum) gegebeb.
a) Man zeige, dass [mm] v_{1}, v_{2}, v_{3} [/mm] eine Basis des [mm] \IR^{3} [/mm] bildet.
--> erledigt
b) Man überprüfe die Vorraussetzungen für den Austauschsatz von Steinitz für die Basis [mm] v_{1}, v_{2}, v_{3} [/mm] und die Vektoren [mm] w_{1}, w_{2}. [/mm]
c) Man tausche 2 der Vektoren [mm] v_{1}, v_{2}, v_{3} [/mm] mit [mm] w_{1}, w_{2} [/mm] aus. Man gebe also explizit eine im Austauschsatz von Steinitz behauptete Basis an.


Hey Leute,

wieder mal ne Frage von mir.
Und zwar versteh ich wohl nicht ganz was mit den Vorraussetzungen für den Austauschsatz gemeint ist.

Ich hab ja in a) gezeigt, dass [mm] v_{1}, v_{2}, v_{3} [/mm] eine Basis von [mm] \IR^{3} [/mm] bildet, d.h. die 3 Vektoren sind linear unabhängig.
Jetzt muss ich doch rein theoretisch zeigen, dass [mm] w_{1}, w_{2} [/mm] linear unabhängig sind oder nicht ?
Damit ich die beiden Vektoren dann in der Aufgabe c) in die Basis eintauschen kann.
Nur sind das alle Vorraussetzungen ?
Müssen nur die Vektoren [mm] w_{1}, w_{2} [/mm] auch linear unabhängig sein oder muss ich noch was überprüfen ? Also z.B. mit welchem der 3 Vektoren ( [mm] v_{1}, v_{2}, v_{3} [/mm] ) [mm] w_{1}, w_{2} [/mm] wieder linear unabhängig sind ?

Vielen Dank schon mal für eure Antworten !

        
Bezug
Austauschsatz von Steinitz: Antwort
Status: (Antwort) fertig Status 
Datum: 14:20 Fr 16.12.2011
Autor: angela.h.b.


> Es seien die Vektoren [mm]v_{1}[/mm] = [mm]\vektor{1 \\ 1 \\ 3}, v_{2}[/mm] =
> [mm]\vektor{1 \\ 0 \\ -1}, v_{3}[/mm] = [mm]\vektor{-1 \\ 1 \\ 2}[/mm]
>  [mm]w_{1}[/mm]
> = [mm]\vektor{0 \\ 2 \\ 2}, w_{2}[/mm] = [mm]\vektor{3 \\ 2 \\ -1}[/mm]
>  aus
> dem [mm]\IR^{3}[/mm] (aufgefasst als [mm]\IR[/mm] Vektorraum) gegebeb.
>  a) Man zeige, dass [mm]v_{1}, v_{2}, v_{3}[/mm] eine Basis des
> [mm]\IR^{3}[/mm] bildet.
>  --> erledigt

>  b) Man überprüfe die Vorraussetzungen für den
> Austauschsatz von Steinitz für die Basis [mm]v_{1}, v_{2}, v_{3}[/mm]
> und die Vektoren [mm]w_{1}, w_{2}.[/mm]
>  c) Man tausche 2 der
> Vektoren [mm]v_{1}, v_{2}, v_{3}[/mm] mit [mm]w_{1}, w_{2}[/mm] aus. Man gebe
> also explizit eine im Austauschsatz von Steinitz behauptete
> Basis an.
>  
> Hey Leute,
>  
> wieder mal ne Frage von mir.
>  Und zwar versteh ich wohl nicht ganz was mit den
> Vorraussetzungen für den Austauschsatz gemeint ist.

Hallo

es wäre nicht ganz ungeschickt, würdest Du an dieser Stelle Eure Formulierung des Basisaustauschsatzes angeben - aber ich denke, wir bekommen es auch so hin.

>  
> Ich hab ja in a) gezeigt, dass [mm]v_{1}, v_{2}, v_{3}[/mm] eine
> Basis von [mm]\IR^{3}[/mm] bildet, d.h. die 3 Vektoren sind linear
> unabhängig.
>  Jetzt muss ich doch rein theoretisch zeigen, dass [mm]w_{1}, w_{2}[/mm]
> linear unabhängig sind oder nicht ?

Ich würde das nicht "rein theoretisch" zeigen, sondern grad mal durch"rechnen".


>  Damit ich die beiden Vektoren dann in der Aufgabe c) in
> die Basis eintauschen kann.
>  Nur sind das alle Vorraussetzungen ?
>  Müssen nur die Vektoren [mm]w_{1}, w_{2}[/mm] auch linear
> unabhängig sein oder muss ich noch was überprüfen ? Also
> z.B. mit welchem der 3 Vektoren ( [mm]v_{1}, v_{2}, v_{3}[/mm] )
> [mm]w_{1}, w_{2}[/mm] wieder linear unabhängig sind ?

Damit der Basisaustauschsatz greift, brauchst Du als Voraussetzung eine Basis und eine linear unabhängig Menge.
Mehr nicht.

Wie man dann tauscht, ist nicht Inhalt des Basisaustauschsatzes und nicht die Frage, die in b) gestellt wird.

Tauschen tust Du dann in c).

Gruß v. Angela

>  
> Vielen Dank schon mal für eure Antworten !


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de