www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Auswertung Skalarprodukt
Auswertung Skalarprodukt < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Auswertung Skalarprodukt: Orientierung/Vorzeichen
Status: (Frage) überfällig Status 
Datum: 13:16 Fr 01.06.2012
Autor: jumape

Aufgabe
Werten Sie folgende Gleichung aus:
[mm] =\integral_{\Omega}{f^t*g dx} [/mm]

bezüglich der Gleichungen, die nur an einem Punkte 1 sind und sonst überall 0 (hierbei sind die Punkte des in Dreiecke diskretisierten Gebietes gemeint), aus.


Ich habe die Aufgabe gelöst komme aber auf falsche Ergebnisse. Leider weiß ich nicht was ich genau falsch gemacht habe. Da es sich nur um Vorzeichenfehler handelt denke ich, dass es an der Orientierung liegt. Vielleicht kann mir da jemand helfen.

Wir betrachten das Gebiet [mm] \Omega=[0,1]x[0,1] [/mm]

[mm] \Omega [/mm] wird diskretisiert und die Gleichungen sehen so aus:

[mm] f_{k,l}=\begin{cases}1+(y/h-l) \mbox{ für Dreieck } 1\\1-(x/h-k)+(y/h-l) \mbox{ für Dreieck } 2\\1-(y/h-l) \mbox{ für Dreieck } 3\\1-(x/h-k) \mbox{ für Dreieck } 4\\1+(x/h-k)-(y/h-l) \mbox{ für Dreieck } 5\\1+(x/h-k) \mbox{ für Dreieck } 6\end{cases} [/mm]

Die sechs Dreiecke sind diejenigen die um den Punkt (kh,lh) drumherum liegen.
Sie haben folglich alle den Eckpunkt (kh,lh) und folgende zwei weitere:
1:((k-1)*h,(l-1)*h),(kh,(l-1)*h)
2:((k+1)*h,kh),(kh,(l-1)*h)
3:((k+1)*h,(l+1)*h),(k+1)*h,lh)
4:((k+1)*h,(l+1)*h),(kh,(l+1)*h)
5:((k-1)*h,lh),(kh,(l+1)*h)
6:((k-1)*h,(l-1)*h),((k-1)*h,lh)

In allen anderen Dreiecken des diskretisierten Gebietes ist die jeweilige Funktion 0.
Da die Funktionen in jedem Dreieck eine andere Vorschrift haben, habe ich für jedes Dreieck das Integral einzeln gelöst.
Zunächst wie ich für <f,f> das Integral berechnet habe: Jeweils ein Integral über x und eines über y mit den folgenden Grenzen
1:  [mm] \integral_{(k-1)*h}^{kh}\integral_{(l-1)*h}^{x+(l-k)*h}{f^t*f dydx} [/mm]
2:  [mm] \integral_{(k)*h}^{(k+1)*h}\integral_{x+(l-k-1)*h}^{(l)*h}{f^t*f dydx} [/mm]
[mm] 3:\integral_{(k)*h}^{(k+1)*h}\integral_{(l)*h}^{x+(l-k)*h}{f^t*f dydx} [/mm]
[mm] 4:\integral_{(k)*h}^{(k+1)*h}\integral_{x+(l-k)*h}^{(l+1)*h}{f^t*f dydx} [/mm]
[mm] 5:\integral_{(k-1)*h}^{(k)*h}\integral_{(l)*h}^{x+(l-k+1)*h}{f^t*f dydx} [/mm]
[mm] 6:\integral_{(k-1)*h}^{(k)*h}\integral_{x+(l-k)*h}^{(l)*h}{f^t*f dydx} [/mm]

Da kommt dann jeweils [mm] 1/12*h^2 [/mm] raus. Diese summiere ich dann einfach und erhalte [mm] 1/2*h^2. [/mm]

Dann gibt es natürlich noch andere Funktionen mit denen f ausgewertet werden muss und zwar die folgenden. Für [mm] f_{(k)(l)}:f_{(k+1)(l)},f_{(k-1)(l)},f_{(k)(l+1)},f_{(k)(l-1)},f_{(k+1)(l+1)},f_{(k-1)(l-1)} [/mm]

Ich zeige dies exemplarisch für [mm] f_{(k+1)(l)}: [/mm] die beiden funktionen sind fast überall null, es gibt nur zwei dreiecke auf denen sie beide nicht null sind, und auf diesen sind sie folgendermaßen definiert (hierbei sind die beiden dreiecke mit den grenzen wie oben angegeben):
[mm] 2:\integral_{(k)*h}^{(k+1)*h}\integral_{x+(l-k-1)*h}^{(l)*h}{[1-(x/h-k)+(y/h-l)]*[1+(x/h-k-1)]dydx} [/mm]
[mm] 3:\integral_{(k)*h}^{(k+1)*h}\integral_{(l)*h}^{x+(l-k)*h}{[1-(x/h-k)][(x/h-k)-(y/h-l)] dydx} [/mm]

Hier bekomme ich bei beiden Integralen [mm] 1/24*h^2 [/mm] heraus. Ebenso bei allen anderen Berechnungen (also mit den anderen 5 Funktionen die mit [mm] f_{kl} [/mm] gemeinsame Dreiecke haben in denen sie ungleich null sind.)
Das ist aber wohl falsch. Entweder die funktion mit sich selbst muss negativ sein oder die anderen Werte.

Ich frage mich ob ich die Grenzen richtig gewählt habe, oder ob ich wegen der Orientierung irgenwo ein minus davorschreiben muss.
Ich weiss dass das eine Menge Information ist. Aber vielleicht erkennt jemand auf Anhieb, was ich falsch gemacht habe und kann mir helfen.

Vielen dank  im voraus
jumape


        
Bezug
Auswertung Skalarprodukt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Mo 02.07.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de